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Abstract

We present a framework for fast
parsing with probabilistic Head-driven
Phrase Structure Grammars (HPSG).
The parser can integrate semantic and
syntactic preference into figures-of-
merit (FOMs) with the equivalence
class function during parsing, and re-
duce the search space by dynamic
programming and using the integrated
FOMs. We apply a beam thresholding
technique to the parsing algorithm and
evaluated its effectiveness on the Penn
Treebank corpus. Experimental results
show that the parser can achieve signif-
icant speedup compared to full parsing
strategies on the expense of slight loss
of recall.

1 Introduction

Probabilistic modeling of unification-based gram-
mars including HPSG (Pollard and Sag, 1994)
has received a great deal of attention for the last
decade. Log-linear (or Maximum Entropy) mod-
eling provides a promising framework for HPSG
in terms of estimating model parameters (Abney,
1997; Johnson et al., 1999; Miyao et al., 2003).

The computational cost required for parsing is a
major concern for probabilistic HPSG. One way
to obtain the Viterbi (highest probability) parse
given a sentence and a probabilistic model is to
first perform full parsing, which gives all possible
parses regardless of their probabilities, and then

choose the highest probability parse by evaluat-
ing the probability of every parse result. However,
such a naive strategy often requires prohibitive
computational cost.

Geman and Johnson (2002) proposed a dy-
namic programming algorithm for finding the
Viterbi parse in a packed parse forest generated
by unification-based grammars. Their algorithm
enables us to select the highest probability parse
without expanding packed parse forest. The be-
havior of their algorithm is like the Viterbi algo-
rithm for PCFG, and hence the correct parse of the
highest probability is guaranteed. The interesting
idea of their approach is to first enforce full pars-
ing because the probabilities of non-local depen-
dencies, which cannot be computed during pars-
ing, can be computed after full parsing. However,
their efficiency is inherently limited by the com-
putational cost of full parsing.

This paper presents a framework for parsing to
obtain the Viterbi parse given an HPSG and its
probabilistic model. We define the equivalence
class function to reduce multiple feature structures
to a single feature structure that gives the same
resulting figure-of-merit (FOM). With this func-
tion, the parser can integrate semantic and syntac-
tic preference into FOMs during parsing, and re-
duce the search space by dynamic programming
and using the integrated FOMs.

We present the CKY parsing algorithm using
the equivalence class function for probabilistic
HPSG, and apply a beam thresholding technique
to the parsing algorithm. The performance of the
parser is evaluated on the Penn Treebank corpus.



This paper is organized as follows. Section 2
describes the previous work for efficient parsing
with the grammars like HPSG. Section 3 gives
the definitions of the probabilistic HPSG. Section
4 presents the equivalence class function and the
CKY parsing algorithm using this function. Ex-
perimental results using the Penn Treebank corpus
are presented in Section 5. Section 6 offers some
concluding remarks.

2 Related work

Many of the methods for improving parsing effi-
ciency of deep linguistic analysis have been stud-
ied in the frameworks of grammars such as Lexi-
cal Functional Grammar (LFG) (Bresnan, 1982),
Lexicalized Tree Adjoining Grammar (LTAG)
(Shabes et al., 1988), Head-driven Phrase Struc-
ture Grammars (Pollard and Sag, 1994), and Com-
binatory Categorial Grammar (CCG) (Steedman,
2000). Most of them are proposed for full parsing,
i.e., all-paths search without FOM (Matsumoto et
al., 1983; Maxwell and Kaplan, 1993; van Noord,
1997; Kiefer et al., 1999; Malouf et al., 2000; Tori-
sawa et al., 2000; Penn and Munteanu, 2003). The
full parsing strategy is widely used in grammar de-
velopment, training of parameters for the proba-
bilistic models, or finding the most probable parse
among all parses derived by full parsing. How-
ever, full parsing is far too expensive in practice
because it exhaustively searches all parses derived
by the given grammar, especially in case of auto-
matically acquired wide-coverage grammars.

Deep linguistic analysis by unification-based
grammars is employed in the VERBMOBIL
spontaneous speech translation system (Wahlster,
1993; Kasper et al., 1996). Because their sys-
tem supposes real-time processing of spontaneous
speech, efficiency and robustness were their great
concern. Kasper et al. (1996) proposed a proba-
bilistic model where probabilities are assigned to
the CFG backbone of the unification-based gram-
mar, and the most probable parse is found by
PCFG parsing. After PCFG parsing, the most
probable CFG parse is selected and re-parsed
by the original unification-based grammar. This
process is repeated until parsing by the original
unification-based grammar succeeds. Their proba-
bilistic model is based on PCFG and not the prob-

abilistic unification-based grammar parsing.
Many algorithms for improving efficiency of

PCFG parsing are extensively studied including
grammar compilation (Tomita, 1986; Nederhof,
2000), the Viterbi algorithm, controlling search
strategies without FOM such as left-corner pars-
ing (Rosenkrantz and Lewis II, 1970) or head-
corner parsing (Kay, 1970; van Noord, 1997),
and with FOM such as the beam search, the best-
first search or A* search (Chitrao and Grishman,
1990; Caraballo and Charniak, 1998; Collins,
1999; Ratnaparkhi, 1999; Roark, 2001; Klein and
Manning, 2003). The beam search or the best-
first search significantly reduces the time required
for finding the best parse at the cost of losing
guarantee of correct parse. However, their al-
gorithms cannot simply be applied to the prob-
abilistic unification-based grammar parsing be-
cause they assume the locality of probabilities,
which cannot be assumed in probabilistic models
of unification-based grammars. For example, non-
local constraints in unification-based grammars,
such as constraints for wh-movement or predicate
argument relations, break the locality of probabili-
ties. This is mainly because the PCFG parsing has
a coincidence of the locality of the probability and
the locality of the process, which the probabilistic
unification-based grammar parsing does not have.

3 Probabilistic model of HPSG

In HPSG, a small number of schemata explain
general grammatical constraints, while a large
number of lexical entries express word-specific
characteristics. Both schemata and lexical entries
are represented by typed feature structures, and
constraints represented by feature structures are
checked with unification (for details, see (Pollard
and Sag, 1994)). Figure 1 shows an example of
HPSG parsing of the sentence “Spring has come.”
First, each of the lexical entries for “has” and
“come” is unified with a daughter feature struc-
ture of the Head-Complement Schema. Unifica-
tion provides the phrasal sign of the mother. The
sign of the larger constituent is obtained by repeat-
edly applying schemata to lexical/phrasal signs.
Finally, the parse result is output as a phrasal sign
that dominates the entire sentence.

Given set W of words and set F of feature
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Figure 1: HPSG parsing

structures, an HPSG grammar is formulated as fol-
lows.

Definition 1 (HPSG grammar) An HPSG gram-
mar is a tuple, G = 〈L,R〉, where

• L = {l = 〈w,F 〉|w ∈ W, F ∈ F} is a set of
lexical entries, and

• R is a set of grammar rules, i.e., r ∈ R is a
partial function: F × F → F .

Given a sentence, an HPSG grammar computes a
set of phrasal signs, i.e., feature structures, as a
result of parsing.

Existing studies (Abney, 1997; Johnson et al.,
1999; Miyao et al., 2003) define a probability of
feature structure F with log-linear model or max-
imum entropy model as follows.

Definition 2 (Probabilistic HPSG) Probability
p(F |w) of feature structure F assigned to given
sentence w is defined as follows.

p(F |w) =
1

Zw

exp

(

∑

i

λiσ(si, F )

)

Zw =
∑

F ′

exp

(

∑

i

λiσ(si, F
′)

)

where λi is a model parameter, si is a fragment
of a feature structure, and σ(si, F ) is a function to
return the number of appearances of feature struc-
ture fragment si in F .

Intuitively, a probability is defined as a normalized
product of the weights exp(λi) when fragment si

appears in the feature structure F . The proba-
bility represents syntactic/semantic preference ex-
pressed in a feature structure. For example, in the
probabilistic model of predicate-argument struc-
tures (Miyao et al., 2003), si was designed to be
each predicate-argument relation.

4 CKY parsing for probabilistic HPSG

The CKY algorithm, which is essentially a
bottom-up parser, is a natural choice for non-
probabilistic HPSG parsers. Because the large
portion of constraints is expressed in lexical en-
tries in HPSG, bottom-up parsers can utilize those
constraints to reduce the search space in early
stages of parsing.

For PCFG, extending the CKY algorithm to out-
put the Viterbi parse is straightforward (Ney, 1991;
Jurafsky and Martin, 2000). The parser can ef-
ficiently calculate the Viterbi parse by taking the
maximum of the probabilities of the same nonter-
minal symbol in each cell.

To achieve such efficiency in CKY parsing for
probabilistic HPSG, we need a function to reduce
multiple feature structures that are equivalent in
terms of resulting FOMs to a single feature struc-
ture.

4.1 Equivalence class function

First, we define the FOM of feature structure F as

∆(F ) =
∑

i

λiσ(si, F ),

and δ(r, F1, F2) as

δ(r, F1, F2) = ∆(F ) − ∆(F1) − ∆(F2),

F = r(F1, F2),

where r is a grammar rule, and F1 and F2 are the
daughters of F .

We define equivalence class function η as a
function η : F → F that satisfies the following
conditions for all F1, F2 and r.

Condition 1:

∃F.(F = η(r(F1, F2)) ⇔ F = η(r(η(F1), η(F2))))



Condition 2:

∃d.(d = δ(r, F1, F2) ⇔ d = δ(r, η(F1), η(F2))

The first condition guarantees that the parsing
with reduced feature structures will not overgener-
ate nor undergenerate. The second assures that the
FOM computed with reduced feature structures is
equivalent to the original one.

If we can construct the equivalence class func-
tion for a given grammar, we can calculate the
FOM of the mother as

∆(F ) = δ(r, η(F1), η(F2)) + ∆(F1) + ∆(F2).

This equation indicates that we can employ dy-
namic programming on reduced feature structures
in CKY parsing. The remaining issue is how to
construct the equivalence class function, which
depends on the grammar and the FOM model.

Designing the equivalence class function for lo-
cal features is straightforward. The function can
simply discard the portions of the feature structure
for the local features which have no influence on
the succeeding parsing processes and FOMs.

As for non-local features, Miyao et al. (2003)
implicitly defined an equivalence class function
for predicate argument structures. In their defi-
nition, instantiated arguments were removed from
predicate argument structures in each step of pars-
ing, because instantiated arguments were no more
required for further processing in their probabilis-
tic model. Owing to this function, predicate argu-
ment structures could be represented with a com-
pact packed structure, which allowed the tractable
estimation of model parameters.

In this work we follow their approach and de-
fine the equivalence class function as the one that
removes instantiated arguments from the feature
structure. In other words, the equivalence class
function effectively delays the evaluation of prob-
abilities of non-local dependencies until they are
fixed.

The computational cost of this parsing frame-
work heavily depends on how efficiently we can
compute δ(r, η(F1), η(F2)) in each step. The
probabilistic model used in this paper define each
non-local feature as a pair of predicate-argument
relations. Since the probabilistic model is linear,

function CKY(words, grammar)
{

# diagonal
for i = 1 to num words

foreach Fu ∈ {F |〈wi, F 〉 ∈ L}
α = log(P (Fu → wi))
F ′

u = η(Fu)
if (α > π[i, i][F ′

u]) then
π[i, i][F ′

u] = α

# the rest of the matrix
for j = 2 to num words

for i = 1 to num words-j+1
for k = 1 to j-1

foreach Fs ∈ π[i, k]
foreach Ft ∈ π[i + k, j − k]
if F = r(Fs, Ft) has succeeded

α = ∆(Fs) + ∆(Ft) + δ(r, Fs, Ft)
F ′ = η(F )
if (α > π[i, j][F ′]) then

π[i, j][F ′] = α
}

Figure 2: Pseudocode of CKY parsing for proba-
bilistic HPSG.

we can compute δ(r, η(F1), η(F2)) for non-local
features by just summing up the weights of newly
instantiated arguments.

4.2 CKY parsing algorithm

Figure 2 shows a CKY parsing algorithm for Prob-
abilistic HPSG. The algorithm is almost identical
to the CKY for PCFG. Note that a feature structure
is reduced by the equivalence class function just
before whose FOM is compared with that of the
corresponding feature structure which is already
in the chart.

After filling the chart, the parser can ob-
tain the Viterbi parse by starting from the cell
π[1, num words] and traversing the chart along
the links to the daughters. It should be noted
that no additional computation is required to con-
struct the best predicate-argument relations for the
sentence, which is often quite expensive in full-
parsing strategies. All the computations required
to build the entire Viterbi parse including argu-
ment structures are done during filling the chart.

4.3 Beam thresholding

The CKY algorithm with the equivalent class
function enables us to employ various pruning
techniques for efficient parsing.

Beam thresholding is a simple and effective



γ phrasal category
pos part-of-speech of the head word
lc lexical entry of the head word
r schema
δ distance between the head words of daughters
pc existence of punctuation between daughters
ρ argument position in a predicate-argument structure

Table 1: Notations in the description of features

technique to prune edges during parsing. In each
cell of the chart, the method keeps only a portion
of the edges which have higher FOMs compared
to the other edges in the same cell.

In this work, we tried two selection schemes for
deciding the edges to be kept in each cell.

• Thresholding by number of edges

Each cell keeps the top n edges according to
their FOMs.

• Thresholding by beam width

Each cell keeps the edges whose FOM is
greater than αmax − w, where αmax is the
highest FOM among the edges in the cell.

5 Experiments

5.1 Grammar and probabilistic models

An HPSG grammar used in the experiments was
extracted from the Penn Treebank (Marcus et al.,
1994) by the method of Miyao et al. (Miyao et al.,
2004). The grammar acquired from the Penn Tree-
bank Sections 02–21 (39,598 sentences) consisted
of 826 lexical entry templates for 10,809 words.
In average, 2.62 lexical entries were assigned to a
word.

In order to investigate the effect of beam-
thresholding with a different kind of probabilistic
models, we prepared two probabilistic mod-
els. One was a model using only syntactic
features (the syntax model). Syntactic features
capture the characteristics of each branching
in an HPSG derivation. Formally, a syntactic
feature represents the occurrence of the branching
〈〈γh, posh, lch〉, 〈γn, posn, lcn〉, r, δ, pc〉, where
γh and γn are for head/non-head daughters and
other notations are represented in Table 1. The
other was a model using semantic features in addi-
tion to the syntactic features (the full model). Se-
mantic features capture the characteristics of each

# Features Data size Estimation time
syntax 54,345 8.66 GB 76 min
full 56,440 13.15 GB 110 min

Table 2: Space/computational costs of model esti-
mation

predicate-argument relation, which is formally
represented with 〈〈posh, lch〉, 〈posn, lcn〉, ρ, δ〉.
Note that the syntax model concerns tree struc-
tures of HPSG derivations, while the full model
treats predicate-argument structures that can
include re-entrant structures. Comparing the
behaviors of these models, we can investigate the
effect of the equivalent class function in the model
involving re-entrant structures. We implemented
the equivalence class function similar to the
existing study on the probabilistic modeling of
predicate-argument structures (Miyao et al., 2003)

Table 2 shows the space/computational costs of
model estimation. The parameters of the two mod-
els were estimated by using the limited-memory
BFGS algorithm (Nocedal, 1980) with a Gaussian
distribution as a prior probability distribution for
smoothing (Chen and Rosenfeld, 1999). All of the
experiments were performed on servers with 1.26-
GHz Pentium-III CPU and 4-GB memory.

The sentences in section 22 were used for eval-
uation. We parsed all the sentences that had less
than 40 words.

5.2 Beam thresholding schemes

We first performed experiments to evaluate the
beam thresholding schemes presented in section
4.3. We evaluated the accuracy of predicate-
argument relations of the output Viterbi parses and
the total time required for parsing the sentences.
Each predicate-argument relation was counted as
correct if the type of predicate, the argument posi-
tion, the head word, and the argument word were
all correct.

Figure 3 to 4 show the precision (or recall) and
the total time for parsing the entire section using
the syntax model. It is somewhat interesting that
the beam thresholding strategy does not degrade
the precision of the output. The main reason is that
the parser does not output any predicate-argument
relations for a sentence if the parsing has failed by
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Figure 4: Recall versus time in the syntax model

pruning the edges that are necessary to construct a
complete parse of the sentence.

On the other hand, the recall significantly de-
teriorated as we tightened the threshold. The two
thresholding schemes showed comparable perfor-
mance.

The results in the full model are shown in Fig-
ure 5 to 6. They show similar trends to those in the
syntax model. With regard to the recall, thershold-
ing by beam width gives slightly better results than
that by number of edges.

5.3 Comparing with the baseline parser

One simple way to obtain the best parse of a sen-
tence is to first parse the sentence without using
the probabilistic model, then search the best parse
among the parse results. We have implemented
this baseline parser with the CKY parsing algo-
rithm for non-probabilistic HPSG combined with
a CFG filtering technique (Torisawa et al., 2000),
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which is one of the most efficient techniques to
perform full parsing.

We compared our parsing algorithm proposed in
this paper with the baseline parser with regard to
the speed and accuracy of parsing. Table 3 show
the results. The parameter setting of each beam
thresholding scheme was chosen in such a way
that the time of parsing is around 10% of the base-
line parser. We also performed parsing by com-
bining the two thresholding schemes. The parser
with the combined thresholding achieved signifi-
cant speedup compared with the baseline parser.
In this parameter setting, the loss of recall was
quite small (around 5%). We have also conducted
the same experiments with the full model (Table
4). Again, the parser with the combined thresh-
olding showed considerable speedup.

In these experiments, the baseline parser spent
about one-third of the time on full parsing. This
gives the upper-bound of the speedup of any pars-
ing algorithms including (Geman and Johnson,



2002) that require full parsing as the first phase.
Our parsing algorithm still offers considerable
speedup when compared to the upper bounds. The
rest of the time was spent on selecting the best
parse.

6 Conclusion

This paper presented a framework for efficient
parsing with probabilistic HPSG with the equiva-
lence class function. The proposed framework en-
ables us to perform dynamic programming on par-
tial parses and compute their probabilities during
parsing. It therefore does not require full parsing.
With this function, the search space can be sig-
nificantly reduced by various pruning techniques
including beam search and best-first search strate-
gies.

We have built a parser using this framework and
a beam thresholding technique. Experimental re-
sults on the Penn Treebank corpus show that the
parser can achieve significant speedup with slight
loss of recall compared to the conventional parser
with CFG filtering.
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