
Bidirectional Inference with the Easiest-First Strategy
for Tagging Sequence Data

Abstract

This paper presents a bidirectional in-
ference algorithm for sequence labeling
problems such as POS tagging, named
entity recognition and shallow parsing
(chunking). The algorithm can enumerate
all possible decomposition structures and
find the highest probability sequence to-
gether with the corresponding decomposi-
tion structure in polynomial time. We also
present an efficient decoding algorithm
based on the easiest-first strategy, which
gives comparably good performance to
full bidirectional inference with signifi-
cantly lower computational cost. Exper-
imental results of POS tagging and text
chunking show that the proposed bidirec-
tional inference methods consistently out-
perform unidirectional inference methods
and bidirectional MEMMs give compara-
ble performance to that achieved by state-
of-the-art learning algorithms including
kernel support vector machines.

1 Introduction

The task of labeling sequence data such as part-
of-speech tagging, shallow parsing (chunking) and
named entity recognition is one of the most impor-
tant tasks in natural language processing.

Conditional random fields (CRFs) (Lafferty et al.,
2001) have recently attracted much attention be-
cause they are free from so-called label bias prob-
lems which reportedly degrade the performance of

sequential classification approaches like maximum
entropy markov models (MEMMs).

Although sequential classification approaches
could suffer from label bias problems, they have sev-
eral advantages over CRFs. One is the efficiency of
training. CRFs need to perform dynamic program-
ming over the whole sentence in order to compute
feature expectations in each iteration of numerical
optimization. Training, for instance, second-order
CRFs using a rich set of features can require pro-
hibitive computational resources. This is presum-
ably the reason why CRFs have not yet succeeded in
achieving the best accuracy on English POS tagging.

Another advantage is that one can employ a vari-
ety of machine learning algorithms as the local clas-
sifier. In the machine learning community, there is
huge amount of work about developing classifica-
tion algorithms that have high generalization per-
formance. Being able to incorporate such state-of-
the-art machine learning algorithms is a big advan-
tage. Indeed, sequential classification approaches
with kernel support vector machines offer com-
petitive performance in POS tagging and chunk-
ing (Gimenez and Marquez, 2003; Kudo and Mat-
sumoto, 2001).

One obvious way to improve the performance of
sequential classification approaches is to enrich the
information that the local classifiers can have. In
standard decomposition techniques, the local classi-
fiers cannot have the information about future tags
(e.g. the right-side tags in left-to-right decoding),
which would be very helpful information for them
to predict the tag of the target word. To make use
of the information about future tags, Toutanova pro-

posed a tagging algorithm based on bidirectional
dependency networks (Toutanova et al., 2003) and
achieved the best accuracy on POS tagging on the
Wall Street Journal corpus. As they pointed out in
their paper, however, the method potentially suffers
from “collusion” effects which make the model lock
onto conditionally consistent but jointly unlikely se-
quences. We will later show that the effects make
the method less effective in another sequence label-
ing task (i.e. chunking).

In this paper we propose an alternative way of
making use of future tags. Our inference method
considers all possible ways of decomposition and
chooses the “best” decomposition, so the informa-
tion about future tags is used in appropriate situa-
tions. We also present a deterministic version of the
inference method and show their effectiveness with
experiments of English POS tagging and chunking,
using standard evaluation sets.

2 Bidirectional Inference

The task of labeling sequence data is to find the se-
quence of tags

�������������
that maximizes the following

probability given the observation 	�
�	 ������� 	 �
�� ��������������� 	�� � (1)

Observations are typically words and their lexical
features in the task of POS tagging. Sequential clas-
sification approaches decompose the probability as
follows,

�� � � ������� � � 	���

��
��� ���

� � � � � � ������� ��� � 	�� � (2)

This is the left-to-right decomposition. If we
make a first-order markov assumption, the equation
becomes

�� � � ������� � � 	��

��
��� � �

� � � � � �!� � 	�� � (3)

Then we can employ a probabilistic classifier
trained with the preceding tag and observations in
order to obtain � � � � � � ��� � 	�� for local classification. A
common choice for the local probabilistic classifier
is maximum entropy classifiers (Berger et al., 1996).
The best tag sequence can be efficiently computed
by using a Viterbi decoding algorithm in polynomial
time.

t1

o1

(a)

(b)

(c)

(d)

t2 t3

o2 o3

t1 t2 t3

t1 t2 t3

t1 t2 t3

o1 o2 o3

o1 o2 o3

o1 o2 o3

Figure 1: Different structures for decomposition

The right-to-left decomposition is

�� � � ������� � � 	��

��
��� ���

� � � � � ��" � 	�� � (4)

These two ways of decomposition are widely used
in various tagging problems in natural language pro-
cessing. The issue with such decompositions is that
you have only the information about the preceding
(or following) tags when performing local classifi-
cation.

From the viewpoint of local classification, we
want to give the classifier as much information as
possible because the information about neighboring
tags is useful in general.

As an example, consider the situation where we
are going to annotate a three-word sentence with
part-of-speech tags. Figure 1 shows four possible
ways of decomposition. They correspond to the fol-
lowing equations:

�$# � �� �%����������&'� 	���
 (� ���)� 	�� �� �+*,� ��� 	�� �� �+&'� ��* 	�� (5)

�.- � �� � � ������� & � 	���
 (� � & � 	�� �� � * � � & 	�� �� � � � � * 	�� (6)�$/ � �� �%����������&'� 	���
 (� ���0� 	�� �� �+&'� 	�� �� ��*1� ��&��%� 	�� (7)�$2 � �� �%����������&'� 	��3
 �� �+*'� 	�� �� �%�0� ��* 	�� �� �+&'� ��* 	�� (8)

(a) is a standard left-to-right decomposition, and
(b) is a right-to-left decomposition. Notice that in
decomposition (c) the local classifier can use the in-
formation about the tags on both sides when decid-
ing

� *
. If, for example, the central word is difficult

to tag (e.g. an unknown word), we might as well
take the decomposition structure (c) because the lo-
cal classifier can have rich information when decid-
ing the tag of the most difficult word. In general if
we have an � -word sentence and adopt a first-order
markov assumption, we have

� � � �
possible ways of

decomposition because each of the ����� edges in the
corresponding graph has two directions (left-to-right
or right-to-left).

Our bidirectional inference method is to consider
all possible decomposition structures and choose the
“best” structure and tag sequence. We will show in
the next section that this is actually possible in poly-
nomial time by dynamic programming.

As for training, let us look at the equations of four
different decompositions above. You can notice that
there are only four types of local conditional prob-
abilities:

�� � � � � �!� � 	�� , �� � � � � ��" � 	�� , (� � � � � �!� � � ��" � 	�� ,
and

(� � � � 	�� .
This means that if we have these four types of lo-

cal classifiers, we can consider any decomposition
structures in the decoding stage. These local classi-
fiers can be obtained by standard training with corre-
sponding neighboring tag information. Training the
first two types of classifiers is exactly the same as
the training of popular left-to-right and right-to-left
sequential classification models respectively.

If we take a second-order markov assumption, we
need to train 16 types of local classifiers because
each of the four neighboring tags of a classification
target has two possibilities of availability. In gen-
eral, if we take a � -th order markov assumption, we
need to train

� *��
types of local classifies.

2.1 Polynomial Time Inference

This section describes an algorithm to find the de-
composition structure and tag sequence that give the
highest probability. The algorithm for the first-order
case is an adaptation of the algorithm for decoding
the best sequence on a bidirectional dependency net-
work introduced by (Toutanova et al., 2003), which
originates from the Viterbi decoding algorithm for
second-order markov models.

function bestScore()	
return bestScoreSub(n+2,
��������������������� ,
��������);�

function bestScoreSub(i+1,
������! "�����������$#% &� ,
'�(���! "���(�)�)	
// memorization
if (cached(i+1,
������! "�����������$#% &� ,
'�(���! "���(�*�))

return cache(i+1,
�� ���! ��� � ��� �$#% � ,
'� ���! ��� � �);
// left boundary case
if (i = -1)

if (
�� ���! ��� � ��� �$#% � =
)+,��-(./�,��+"�0-(.1�2��+,��-(./���) return 1;
else return 0;

// recursive case3
= localClassification(i,
������! "�����������$#% &� ,
'�(���! "���(�)�);

return 465/7(8,9':�;<46517�= 9�:�; 3?>
bestScoreSub(i,

�� �'��@ ��� �'�< ��� � � ,
'� �'��@ ��� �'�< �);�

function localClassification(i,
������! ������������$#% &� ,
'�(�'�< ,���(�)�)	
if (� �'�< �A � & � �!A �) return

3CB � ��D � �$#% ��EGF ;
if (�(�'�< A � & �(� AIH) return

3CB ��� D EJF ;
if (� �'�< �AIH & � �!A �) return

3CB � ��D � �'�< � �$#% ��EGF ;
if (�(�'�< AIH & �(� AKH) return

3CB ��� D ���'�< ���EGF ;�

Figure 2: Pseudo-code for bidirectional inference
for the first-order conditional markov models.

2 � is
the direction of the edge between

� � and
� ��" � .

Figure 2 shows a polynomial time decoding al-
gorithm for our bidirectional inference. It enumer-
ates all possible decomposition structures and tag se-
quences, and finds the highest probability sequence.
Polynomial time is achieved by caching. Note that
for each local classification, the algorithm needs to
choose the appropriate local classifier by taking into
account the directions of the adjacent edges of the
classification target.

The second-order case is similar but slightly more
complex. Figure 3 shows the algorithm. The re-
cursive function needs to consider the directions of
the four adjacent edges of the classification target,
and maintain the directions of the two neighboring
edges to enumerate all possible edge directions. In
addition, the algorithm must rule out cycles in the
structure.

2.2 Decoding with the Easiest-First Strategy

We presented a polynomial time decoding algorithm
in the previous section. However, polynomial time is
not low enough in practice. Indeed, even the Viterbi
decoding of second-order markov models for POS

function bestScore()	
return bestScoreSub(n+3,
�����������������������/����������� ,
����&� ��� ����� ,
�� �����);�

function bestScoreSub(i+2,
������ @1�����'�< ��0��������� #% ���� #!@,� ,
'� � �'�< ���(�'�< ,���(����� � �$#% � ,
'�(��� @ ��� � � �)	
// to avoid cycles
if (�(�'�< = �(� & �(� != � � �) return 0;
// memorization
if (cached(i+2,
������ @1�����'�< ��0��������� #% ���� #!@,� ,
'� � �'�< ���(�'�< ����(����� � �$#% � ,
'�(��� @ ��� � � �)

return cache(i+1,
������ @1�����'�< "�0��������� #% ���� #!@"� ,
'� � �'�< ���(�'�< ����(����� � �$#% � ,
'�(�'��@/��� � � �);
// left boundary case
if (i = -2)

if (
�� ��� @ ��� �'�< �0� � ��� � #% ��� � #�@ � =
)+,��-(.1�2��+,�0-�./�,��+,��-(.1�2��+,��-(./�,��+"�0-(.1���) return 1;
else return 0;

// recursive case3
= localClassification(i,
�� ��� @ ��� �'�< �0� � ��� � #% ��� � #!@ � ,
'� � �'�< ��� ���! ��� � ��� � �$#% �);

return 46517 8��9�:�; 465/7(8,9':��%46517�= 9�:�� 3?>
bestScoreSub(i+1,
�� ����� ��� �'��@ ��� �'�< ��� � � � # � ,
'� � ��� @ ��� �'��@ ��� �'�< ��� � � � ,
'� �'��� ��� � �'�< �);�

Figure 3: Pseudo-code for bidirectional inference for the second-order conditional markov models.
2 � is the

direction of the edge between
� � and

� ��" � . 2
	� is the direction of the edge between
� ��� � and

� ��" � . We omit the
localClassification function because it is the obvious extension of that for the first-order case.

tagging is not practical unless some pruning method
is involved. The computational cost of the bidirec-
tional decoding algorithm presented in the previous
section is, of course, larger than that because it enu-
merates all possible directions of the edges on top of
the enumeration of possible tag sequences.

In this section we present a greedy version of the
decoding method for bidirectional inference, which
is extremely simple and significantly more efficient
than full bidirectional decoding.

Instead of enumerating all possible decomposi-
tion structures, the algorithm determines the struc-
ture by adopting the easiest-first strategy. The whole
decoding algorithm is given below.

1. Find the “easiest” word to tag.

2. Tag the word.

3. Go back to 1. until all the words are tagged.

The “easiest” word to tag is the word for which
the classifier outputs the highest probability. In find-
ing the easiest word, we use the appropriate local
classifier according to the availability of the neigh-
boring tags. Therefore, in the first iteration, we al-
ways use the local classifiers trained with no contex-
tual tag information (i.e.

�$�� � � � 	��). Then, for ex-

ample, if
�+&

has been tagged in the first iteration in
a three-word sentence, we use

�� � * � � & 	�� to compute
the probability for tagging

��*
in the second iteration

(as in Figure 1 (b)).
A naive implementation of this algorithm requires

� � �
*
� invocations of local classifiers, where � is the

number of the words in the sentence, because we
need to update the probabilities over the words at
each iteration. However, a � -th order Markov as-
sumption obviously allows us to skip most of the
probability updates, resulting in

� � �<� � invocations
of local classifiers. This enables us to build a very
efficient tagger.

3 Maximum Entropy Classifier

For local classifiers, we used a maximum entropy
model which is a common choice for incorporating
various types of features for classification problems
in natural language processing (Berger et al., 1996).

Regularization is important in maximum entropy
modeling to avoid overfitting to the training data.
For this purpose, we use the maximum entropy
modeling with inequality constraints (Kazama and
Tsujii, 2003). The model gives equally good per-
formance as the maximum entropy modeling with
Gaussian priors (Chen and Rosenfeld, 1999), and

the size of the resulting model is much smaller than
that of Gaussian priors because most of the param-
eters become zero. This characteristic enables us to
easily handle the model data and carry out quick de-
coding, which is convenient when we repetitively
perform experiments. This modeling has one pa-
rameter to tune as in Gaussian prior modeling. The
parameter is called width factor. We tuned this pa-
rameter using development data in each type of ex-
periments.

4 Experiments

To evaluate the bidirectional inference methods pre-
sented in the previous sections, we ran experiments
on POS tagging and text chunking with standard En-
glish data sets.

Although achieving the best accuracy is not the
primary purpose of this paper, we explored useful
feature sets and parameter setting by using develop-
ment data in order to make the experiments realistic.

4.1 Part-of-speech tagging experiments

We split the Penn Treebank corpus (Marcus et al.,
1994) into training, development and test sets as in
(Collins, 2002). Sections 0-18 are used as the train-
ing set. Sections 19-21 are the development set, and
sections 22-24 are used as the test set. All the ex-
periments were carried out on the development set,
except for the final accuracy report using the best
setting.

For features, we basically adopted the feature set
provided by (Toutanova et al., 2003) except for com-
plex features such as crude company-name detection
features because they are specific to the Penn Tree-
bank and we could not find the exact implementation
details. Table 2 lists the feature templates used in our
experiments.

We tested the proposed bidirectional methods,
conventional unidirectional methods and the bidirec-
tional dependency network proposed by Toutanova
(Toutanova et al., 2003) for comparison. 1. All
the models are second-order. Table 2 shows the

1For dependency network and full bidirectional decoding,
we conducted pruning because the computational cost was too
large to perform exhaustive search. We pruned a tag candidate if
the zero-th order probability of the candidate

3CB � ��D EJF was lower
than one hundredth of the zero-th order probability of the most
likely tag at the token.

Current word � � & ���
Previous word � �'�< & � �
Next word � � # & � �
Bigram features � �'�< , ��� & ���

� � , � �$#% & � �
Previous tag �����! & ���
Tag two back ����� @ & ���
Next tag � �$#% & � �
Tag two ahead � �$#�@ & � �
Tag Bigrams ����� @ , �����! & ���

� ���! , � �$#% & � �
���$#% , ��� #!@ & ���

Tag Trigrams � ��� @ , � ���! , � �$#% & � �
�����! , ���$#% , ��� #!@ & ���

Tag 4-grams ����� @ , �����! , ���$#% , ��� #!@ & ���
Tag/Word � ���! , � � & � �
combination ���$#% , ��� & ���

� ���! , � �$#% , � � & � �
Prefix features prefixes of � � & ���

(up to length 10)
Suffix features suffixes of � � & ���

(up to length 10)
Lexical features whether � � has a hyphen & � �

whether � � has a number & ���
whether � � has a capital letter & ���
whether � � is all capital & � �

Table 1: Feature templates used in POS tagging ex-
periments. Tags are parts-of-speech. Tag features
are not necessarily used in all the models. For ex-
ample, “next tag” features cannot be used in left-to-
right models.

accuracy and tagging speed on the development
data 2. Bidirectional inference methods clearly out-
performed unidirectional methods. Note that the
easiest-first decoding method achieves equally good
performance with full bidirectional inference. Table
2 also shows that the easiest-last strategy, where we
select and tag the most difficult word at each itera-
tion, is clearly a bad strategy.

An example of easiest-first decoding is given be-
low:

The/DT/4 company/NN/7 had/VBD/11
sought/VBN/14 increases/NNS/13 total-
ing/VBG/12 $/$/2 80.3/CD/5 million/CD/8
,/,/1 or/CC/6 22/CD/9 %/NN/10 ././3

Each token represents Word/PoS/DecodingOrder.
Typically, punctuations and articles are tagged first.
Verbs are usually tagged in later stages because their
tags are likely to be ambiguous.

2Tagging speed was measured on a server with an AMD
Opteron 2.4GHz CPU.

Method Accuracy Speed
(%) (tokens/sec)

Left-to-right (Viterbi) 96.92 844
Right-to-left (Viterbi) 96.89 902
Dependency Networks 97.06 1,446
Easiest-last 96.58 2,360
Easiest-first 97.13 2,461
Full bidirectional 97.12 34

Table 2: POS tagging accuracy and speed on the de-
velopment set.

Method Accuracy (%)
Dependency Networks (2003) 97.24
Perceptron (2002) 97.11
SVM (2003) 97.05
Hidden Markov Models (2000) 96.48
Easiest-first 97.10
Full Bidirectional 97.15

Table 3: POS tagging accuracy on the test set.

We applied our bidirectional inference methods
to the test data. The results are shown in Table 3.
The table also summarizes the accuracies achieved
by several other research efforts. The best accuracy
is 97.24% achieved by bidirectional dependency net-
works (Toutanova et al., 2003) with a richer set of
features that are carefully designed for the corpus. A
perceptron algorithm gives 97.11% (Collins, 2002).
Gimenez and Marquez achieves 97.05% with sup-
port vector machines (SVMs). This result indicates
that bidirectional inference with maximum entropy
modeling can achieve comparable performance to
other state-of-the-art POS tagging methods.

4.2 Chunking Experiments

The task of chunking is to find all types of non-
recursive phrases in a sentence. For example, a text
chunker segments the sentence “He reckons the cur-
rent account deficit will narrow to only 1.8 billion in
September” into the following,

[NP He] [VP reckons] [NP the current account
deficit] [VP will narrow] [PP to] [NP only 1.8 bil-
lion] [PP in] [NP September] .

We can regard chunking as a tagging task by con-
verting chunks into tags on tokens. There are several
ways of representing text chunks (Sang and Veen-
stra, 1999). We tested the Start/End representation
in addition to the popular IOB2 representation be-
cause local classifiers can have fine-grained infor-

Current word � � & ���
Previous word � �'�< & � �
Word two back � �'��@ & � �
Next word � � #% & ���
Word two ahead � � #�@ & ���
Bigram features � �'��@ , � �'�< & � �

���'�< , ��� & ���
� � , � �$#% & � �
��� #% , ��� #!@ & ���

Current POS � � & � �
Previous POS � ���! & ���
POS two back � ��� @ & ���
Next POS � �$#% & � �
POS two ahead � �$#�@ & � �
Bigram POS features � ��� @ , � �'�< & ���

� ���! , � � & � �
��� , � � # & ���
� �$#% , � �$#�@ & � �

Trigram POS features � ��� @ , � �'�< , � � & ���
� ���! , � � , � � # & � �
��� , � � # , � � #!@ & ���

Previous tag � ���! & � �
Tag two back � ��� @ & � �
Next tag ���$#% & ���
Tag two ahead ���$#�@ & ���
Bigram tag features � ��� @ , � ���! & � �

�����! , ���$#% & ���
� �$#% , � � #!@ & � �

Table 4: Feature templates used in chunking experi-
ments.

mation about the neighboring tags in the Start/End
representation.

For training and testing, we used the data set pro-
vided for the CoNLL-2000 shared task. The training
set consists of section 15-18 of the WSJ corpus, and
the test set is section 20. In addition, we made the
development set from section 21 of the corpus 3.

We basically adopted the feature set provided in
(Collins, 2002) and used POS-trigrams in addition.
Table 4 lists the features used in chunking experi-
ments.

Table 5 shows the results on the development set.
Again, bidirectional methods exhibit better perfor-
mance than unidirectional methods. The difference
is bigger with the Start/End representation. Depen-
dency networks did not work well for this chunking
task, especially with the Start/End representation.

We applied the best model on the development
set in each chunk representation type to the test
data. Table 6 summarizes the performance on the

3We used a Perl script provided in in
http://ilk.kub.nl/ sabine/chunklink/

Representation Method Order Recall Precision F-score Speed (tokens/sec)
IOB2 Left-to-right 1 93.17 93.05 93.11 1,775

2 93.13 92.90 93.01 989
Right-to-left 1 92.92 92.82 92.87 1,635

2 92.92 92.74 92.87 927
Dependency Networks 1 92.71 92.91 92.81 2,534

2 92.61 92.95 92.78 1,893
Easiest-first 1 93.17 93.04 93.11 2,441

2 93.35 93.32 93.33 1,248
Full Bidirectional 1 93.29 93.14 93.21 712

2 93.26 93.12 93.19 48
Start/End Left-to-right 1 92.98 92.69 92.83 861

2 92.96 92.67 92.81 439
Right-to-left 1 92.92 92.83 92.87 887

2 92.89 92.74 92.82 451
Dependency Networks 1 87.10 89.56 88.32 1,894

2 87.16 89.44 88.28 331
Easiest-first 1 93.33 92.95 93.14 1,950

2 93.31 92.95 93.13 1,016
Full Bidirectional 1 93.52 93.26 93.39 392

2 93.44 93.20 93.32 4

Table 5: Chunking F-scores on the development set.

test set. Our bidirectional methods achieved F-
scores of 93.63 and 93.70, which are better than the
best F-score (93.48) of the CoNLL-2000 shared task
(Sang and Buchholz, 2000) and comparable to those
achieved by other state-of-the-art methods.

5 Discussion

There are some reports that one can improve the per-
formance of unidirectional models by combining the
outputs of taggers with different decoding directions
with some kind of voting. Shen reported an 0.39%
accuracy improvement of supertagging with pair-
wise voting (Shen and Joshi, 2003). The biggest dif-
ference between our approach and such voting meth-
ods is that the local classifier in our bidirectional in-
ference methods can have rich information for de-
cision. Also, voting methods generally need many
tagging processes to be run on a sentence, which
makes it difficult to build a fast tagger.

As for the computational cost for training, our
methods require us to train

� *+�
types of classifiers

when we adopt an � th order markov assumption. In
many cases a second-order model is sufficient be-
cause further increase of � has little impact on per-
formance. Thus the training typically takes four or
16 times as much time as it would take for train-
ing a single classifier, which looks somewhat expen-
sive. However, because each type of classifier can be

trained independently, the training can be performed
completely in parallel and run with the same amount
of memory as that for training a single classifier.
This advantage contrasts to the case for CRFs which
requires substantial amount of memory and compu-
tational cost if one tries to incorporate higher-order
features about tag sequences.

Tagging speed is another important factor in
building practical taggers for large-scale informa-
tion extraction from a huge amount of text such as
WWW documents. Our inference algorithm with
the easiest-first strategy needs no Viterbi decoding
unlike MEMMs and CRFs, and makes it possible to
perform very fast tagging with high precision.

6 Conclusion

We have presented a bidirectional inference algo-
rithm for sequence labeling problems such as POS
tagging, named entity recognition and text chunk-
ing. The algorithm can enumerate all possible de-
composition structures and find the highest prob-
ability sequence together with the corresponding
decomposition structure in polynomial time. We
have also presented an efficient bidirectional infer-
ence algorithm based on the easiest-first strategy,
which gives comparable performance to full bidi-
rectional inference with significantly lower compu-
tational cost.

Method Recall Precision F-score
SVM (Kudoh and Matsumoto, 2000) 93.51 93.45 93.48
SVM voting (Kudo and Matsumoto, 2001) 93.92 93.89 93.91
Regularized Winnow (with basic features) (Zhang et al., 2002) 93.60 93.54 93.57
Perceptron (Carreras and Marquez, 2003) 93.29 94.19 93.74
Easiest-first (IOB2, second-order) 93.59 93.68 93.63
Full Bidirectional (Start/End, first-order) 93.70 93.65 93.70

Table 6: Chunking F-scores on the test set.

Experimental results of POS tagging and text
chunking show that the proposed bidirectional in-
ference methods consistently outperform unidi-
rectional inference methods and our bidirectional
MEMMs give comparable performance to that
achieved by state-of-the-art learning algorithms in-
cluding kernel support vector machines.

A natural extension of this work is to replace
the maximum entropy modeling, which was used as
the local classifiers, with other machine learning al-
gorithms. Support vector machines with appropri-
ate kernels is a good candidate because they have
good generalization performance as a single clas-
sifier. Although SVMs do not output probabilities,
the easiest-first method would be easily applicable
by considering the margins output by SVMs as the
confidence of local classification.

References

Adam L. Berger, Stephen A. Della Pietra, and Vincent
J. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics, 22(1):39–71.

Thorsten Brants. 2000. TnT – a statistical part-of-speech
tagger. In Proceedings of the 6th Applied NLP Con-
ference (ANLP).

Xavier Carreras and Lluis Marquez. 2003. Phrase recog-
nition by filtering and ranking with perceptrons. In
Proceedings of RANLP-2003.

Stanley F. Chen and Ronald Rosenfeld. 1999. A gaus-
sian prior for smoothing maximum entropy models.
Technical Report CMUCS -99-108, Carnegie Mellon
University.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
EMNLP 2002, pages 1–8.

Jesus Gimenez and Lluis Marquez. 2003. Fast and accu-
rate part-of-speech tagging: The SVM approach revis-
ited. In Proceedings of RANLP 2003, pages 158–165.

Jun’ichi Kazama and Jun’ichi Tsujii. 2003. Evaluation
and extension of maximum entropy models with in-
equality constraints. In Proceedings of EMNLP 2003.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with
support vector machines. In Proceedings of NAACL
2001.

Taku Kudoh and Yuji Matsumoto. 2000. Use of support
vector learning for chunk identification. In Proceed-
ings of CoNLL-2000, pages 142–144.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of ICML 2001, pages 282–289.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated cor-
pus of english: The penn treebank. Computational
Linguistics, 19(2):313–330.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. In-
troduction to the conll-2000 shared task: Chunking.
In Proceedings of CoNLL-2000 and LLL-2000, pages
127–132.

Erik F. Tjong Kim Sang and Jorn Veenstra. 1999. Rep-
resenting text chunks. In Proceedings of EACL 1999,
pages 173–179.

Libin Shen and Aravind K. Joshi. 2003. A SNoW based
Supertagger with Application to NP Chunking. In
Proceedings of ACL 2003, pages 505–512.

Kristina Toutanova, Dan Klein, Christopher Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of HLT-NAACL 2003, pages 252–259.

Tong Zhang, Fred Damereau, and David Johnson. 2002.
Text chunking based on a generalization of winnow.
Journal of Machine Learning Research, 2:615–638.

