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Abstract

This paper presents a machine learning
approach to acronym generation. We for-
malize the generation process as a se-
quence labeling problem on the letters in
the definition (expanded form) so that a
variety of Markov modeling approaches
can be applied to this task. To con-
struct the data for training and testing, we
extracted acronym-definition pairs from
MEDLINE abstracts and manually anno-
tated each pair with positional informa-
tion about the letters in the acronym. We
have built an MEMM-based tagger using
this training data set and evaluated the
performance of acronym generation. Ex-
perimental results show that our machine
learning method gives significantly bet-
ter performance than that achieved by the
standard heuristic rule for acronym gen-
eration and enables us to obtain multi-
ple candidate acronyms together with their
likelihoods represented in probability val-
ues.

1 Introduction

Technical terms and named-entities play important
roles in knowledge integration and information re-
trieval in the biomedical domain. However, spelling
variations make it difficult to identify the terms con-
veying the same concept because they are written
in different manners. Acronyms constitute a major

part of spelling variations (Nenadic et al., 2002), so
proper management of acronyms leads to improved
performance of the information systems in this do-
main.

As for the methods for recognizing acronym-
definition pairs from running text, there are many
studies reporting high performance (e.g. over 96%
accuracy and 82% recall) (Yoshida et al., 2000; Ne-
nadic et al., 2002; Schwartz and Hearst, 2003; Za-
hariev, 2003; Adar, 2004). However, another aspect
that we have to consider for efficient acronym man-
agement is to generate acronyms from the given def-
inition (expanded form).

One obvious application of acronym generation
is to expand the keywords in information retrieval.
As reported in (Wren et al., 2005), for example,
you can retrieve only 25% of the documents con-
cerning the concept of “JNK” by using the key-
word “c-jun N-terminal kinase”. In more than 33%
of the documents the concept is written with its
acronym “JNK”. To alleviate this problem, some
research efforts have been devoted to constructing
a database containing a large number of acronym-
definition pairs from running text of biomedical doc-
uments (Adar, 2004).

However, the major problem of this database-
building approach is that building the database offer-
ing complete coverage is nearly impossible because
not all the biomedical documents are publicly avail-
able. Although most of the abstracts of biomedical
papers are publicly available on MEDLINE, there
is still a large number of full-papers which are not
available.

In this paper, we propose an alternative approach



to providing acronyms from their definitions so
that we can obtain acronyms without consulting
acronym-definition databases.

One of the simplest way to generate acronyms
from definitions would be to choose the letters at the
beginning of each word and capitalize them. How-
ever, there are a lot of exceptions in the acronyms
appearing in biomedical documents. The followings
are some real examples of the definition-acronym
pairs that cannot be created with the simple heuristic
method.

RNA polymerase (RNAP)
bioconcentration factor (BF)
melanoma cell adhesion molecule (Mel-CAM)
the xenoestrogen 4-tert-octylphenol (t-OP)

In this paper we present a machine learning ap-
proach to automatic generation of acronyms in order
to capture a variety of mechanisms of acronym gen-
eration. We formalize this problem as a sequence
labeling task such as part-of-speech tagging, chunk-
ing and other natural language tagging tasks so that
common Markov modeling approaches can be ap-
plied to this task.

2 Acronym Generation as a Sequence
Labeling Problem

Given the definition (expanded form), the mecha-
nism of acronym generation can be regarded as the
task of selecting the appropriate action on each letter
in the definition.

Figure 1 illustrates an example, where the defini-
tion is “Duck interferon gamma” and the generated
acronym is “DuIFN-gamma”. The generation pro-
ceeds as follows:

The acronym generator outputs the first
two letters unchanged and skips the fol-
lowing three letters. Then the generator
capitalizes ‘i’ and skip the following four
letters...

By assuming that an acronym is made up of alpha-
numeric letters, spaces and hyphens, the actions be-
ing taken by the generator are classified into the fol-
lowing five classes.

• SKIP

The generator skips the letter.

• UPPER

If the target letter is uppercase, the generator
outputs the same letter. If the target letter is
lowercase, the generator coverts the letter into
the corresponding upper letter.

• LOWER

If the target letter is lowercase, the generator
outputs the same letter. If the target letter is
uppercase, the generator coverts the letter into
the corresponding lowercase letter.

• SPACE

The generator convert the letter into a space.

• HYPHEN

The generator convert the letter into a hyphen.

From the probabilistic modeling point of view,
this task is to find the sequence of actions t1...tn
that maximizes the following probability given the
observation o = o1...on

P (t1...tn|o). (1)

Observations are the letters in the definition and
various types of features derived from them. We de-
compose the probability in a left-to-right manner.

P (t1...tn|o) =
n∏

i=1

p(ti|t1...ti−1o). (2)

By making a first-order markov assumption, the
equation becomes

P (t1...tn|o) =
n∏

i=1

p(ti|ti−1o). (3)

If we have the training data containing a large
number of definition-acronym pairs where the defi-
nition is annotated with the labels for actions, we can
estimate the parameters of this probabilistic model
and the best action sequence can be efficiently com-
puted by using a Viterbi decoding algorithm.

In this paper we adopt a maximum entropy model
(Berger et al., 1996) to estimate the local probabili-
ties p(ti|ti−1o) since it can incorporate diverse types
of features with reasonable computational cost. This
modeling, as a whole, is called Maximum Entropy
Markov Modeling (MEMM).
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Figure 1: Acronym generation as a sequence labeling problem. The definition is “Duck interferon gamma”
and the acronym is “DuIFN-gamma”. Each letter in the acronym is generated from a letter in the definition
following the action for the letter.

Regularization is important in maximum entropy
modeling to avoid overfitting to the training data.
For this purpose, we use the maximum entropy
modeling with inequality constraints (Kazama and
Tsujii, 2003). The model gives equally good per-
formance as the maximum entropy modeling with
Gaussian priors (Chen and Rosenfeld, 1999), and
the size of the resulting model is much smaller than
that of Gaussian priors because most of the param-
eters become zero. This characteristic enables us
to easily handle the model data and carry out quick
decoding, which is convenient when we repetitively
perform experiments. This modeling has one param-
eter to tune, which is called width factor. We set this
parameter to be 1.0 throughout the experiments.

3 The Data for Training and Testing

Since there is no training data available for the ma-
chine learning task described in the previous section,
we manually created the data. First, we extracted
definition-acronym pairs from MEDLINE abstracts
using the acronym acquisition method proposed by

(Schwartz and Hearst, 2003). The abstracts used for
constructing the data were randomly selected from
the abstracts published in the year of 2001. Dupli-
cated pairs were removed from the set.

In acquiring the pairs from the documents, we fo-
cused only on the pairs that appear in the form of

... expanded form (acronym) ...

We then manually removed misrecognized pairs
and annotated each pair with positional informa-
tion. The positional information tells which letter
in the definition should correspond to a letter in the
acronym. Table 1 lists a portion of the data. For
example, the positional information in the first pair
indicates that the first letter ‘i’ in the definition cor-
responds to ‘I’ in the acronym, and the 12th letter
‘m’ corresponds to ‘M’.

With this positional information, we can create
the training data for the sequence labeling task be-
cause there is one-to-one correspondence between
the sequence labels and the data with positional in-
formation. In other words, we can determine the ap-



Positional
Definition Acronym Information

intestinal metaplasia IM 1, 12
lactate dehydrogenase LDH 1, 9, 11

cytokeratin CK 1, 5
cytokeratins CKs 1, 5, 12

Epstein-Barr virus EBV 1, 9, 14
30-base pairs bp 4, 9

in-situ hybridization ISH 1, 4, 9
: : :

Table 1: Curated data containing definitions, their
acronyms and the positional information.

propriate action for each letter in the definition by
comparing the letter with the corresponding letter in
the acronym.

4 Features

Maximum entropy modeling allows us to incorpo-
rate diverse types of features. In this paper we use
the following types of features in local classification.
As an example, consider the situation where we are
going to determine the action at the letter ‘f’ in the
definition “Duck interferon gamma”.

• Letter unigram (UNI)

The unigrams of the neighboring letters. (e.g.
‘r’, ‘f’, ‘e’)

• Letter bigram (BI)

The bigrams of the neighboring letters. (e.g.
“er”, “rf”, “fe”, “er”)

• Letter trigram (TRI)

The trigrams of the neighboring letters. (e.g.
“ter”, “erf”, “rfe”, “fer”, “ero”)

• Action history (HIS)

The preceding action (e.g. SKIP)

• Orthographic features (ORT)

Whether the target letter is uppercase or not
(e.g. false)

• Definition Length (LEN)

The number of the words in the definition (e.g.
3)

Rank Probability String
1 0.779 TBI
2 0.062 TUBI
3 0.028 TB
4 0.019 TbI
5 0.015 TB-I
6 0.009 tBI
7 0.008 TI
8 0.007 TBi
9 0.002 TUB
10 0.002 TUbI

ANSWER TBI

Table 2: Generated acronyms for “traumatic brain
injury”.

• Letter sequence (SEQ)

1. The sequence of the letters ranging from
the beginning of the word to the target let-
ter. (e.g. “interf”)

2. The sequence of the letters ranging from
the target letter to the end of the word.
(e.g. “feron”)

3. The word containing the target letter. (e.g.
interferon)

• Distance (DIS)

1. The distance between the target letter and
the beginning of the word. (e.g. 6)

2. The distance between the target letter and
the tail of the word. (e.g. 5)

5 Experiments

To evaluate the performance of the acronym gener-
ation method presented in the previous section, we
ran five-fold cross validation experiments using the
manually curated data set. The data set consists of
1,901 definition-acronym pairs.

For comparison, we also tested the performance
of the popular heuristics for acronym generation in
which we choose the letters at the beginning of each
word in the definition and capitalize them.

5.1 Generated Acronyms

Tables 2 to 5 show some examples of generated
acronyms together with their probabilities. They



Rank Probability String
1 0.423 ORF1
2 0.096 OR1
3 0.085 ORF-1
4 0.070 RF1
5 0.047 OrF1
6 0.036 OF1
7 0.025 ORf1
8 0.019 OR-1
9 0.016 R1

10 0.014 RF-1
ANSWER ORF-1

Table 3: Generated acronyms for “open reading
frame 1”.

Rank Probability String
1 0.163 RNA-P
2 0.147 RP
3 0.118 RNP
4 0.110 RNAP
5 0.064 RA-P
6 0.051 R-P
7 0.043 RAP
8 0.041 RN-P
9 0.034 RNA-PM
10 0.030 RPM

ANSWER RNAP

Table 4: Generated acronyms for “RNA poly-
merase”.

are sorted with their probabilities and the top ten
acronyms are shown. The correct acronym given in
the training data is described in the bottom row in
each table.

In Table 2, the definition is “traumatic brain in-
jury” and the correct acronym is “TBI”. This is
the simplest case in acronym generation, where
you choose the first letters of the definition. Our
acronym generator gives a high probability to the
correct acronym and it is ranked at the top.

Table 3 shows a slightly more complex case,
where you need to convert the space between ‘F’ and
‘1’ into a hyphen. The correct answer is located at
the third rank.

The definition in Table 4 is “RNA polymerase”

Rank Probability String
1 0.405 MCPP
2 0.149 MCP
3 0.056 MCP
4 0.031 MPP
5 0.028 McPP
6 0.024 MchPP
7 0.020 MC
8 0.011 MP
9 0.011 mCPP

10 0.010 MCRPP
ANSWER mCPP

Table 5: Generated acronyms for “meta-
chlorophenylpiperazine”.

Rank Coverage (%)
1 55.2
2 65.8
3 70.4
4 73.2
5 75.4
6 76.7
7 78.3
8 79.8
9 81.1

10 82.2
BASELINE 47.3

Table 6: Coverage achieved with the Top N Candi-
dates.



and the correct acronym is “RNAP”, so the gener-
ator needs to the first three letters unchanged. The
correct answer is located at the fourth rank, and the
probability given the correct answer does not have a
large gap with the top-ranked acronym.

Table 5 shows a more difficult case, where you
need to output the first letter in lowercase and choose
appropriate letters from the string having no delim-
iters (e.g. spaces and hyphens). Our acronym gener-
ator outputs the correct acronym at the nine-th rank
but the probability given this acronym is very low
compared to that given to the top-ranked string.

5.2 Coverage

Table 6 shows how much percentage of the cor-
rect acronyms are covered if you take top N can-
didates from the outputs of the acronym genera-
tor. The bottom line (BASELINE) shows the cov-
erage achieved by generating one acronym using the
standard heuristic rule for acronym generation. If
you compare the percentage of Rank 1 with that of
BASELINE, you can see that our acronym generator
works better than the heuristic rule.

If you take top five candidates, you can have
a coverage of 75.4%, which is considerably better
than that achieved by the heuristic rule. This sug-
gests that the acronym generator could be used to
significantly improve the performance of the sys-
tems for information retrieval and information inte-
gration.

5.3 Features

To evaluate how much individual types of features
affect the generation performance, we ran experi-
ments using different feature types. Table 7 shows
the results. Overall, the results show that various
types of features have been successfully incorpo-
rated in the MEMM modeling and individual types
of features contribute to improving performance.

The performance achieved with only unigram fea-
tures is almost the same as that achieved by the
heuristic rule. Note that the features on the previous
state improve the performance, which suggests that
our selection of the states in the Markov modeling is
a reasonable choice for this task.
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Figure 2: Learning curve.

5.4 Learning Curve

Figure 2 shows a learning curve of our acronym
generator, which shows the relationship between the
number of the training samples and the performance
of the system. The graph clearly indicates that the
performance consistently improves as the training
data increases and still continues to improve even
when the size of the training data reaches the max-
imum. This suggests that we can achieve improved
performance by increasing the annotated data for
training.

6 Conclusion

We presented a machine learning approach to
acronym generation. In this approach, we regarded
the generation process as a sequence labeling prob-
lem, and we manually created the data for training
and testing.

Experimental results using 1901 definition-
acronym pairs, we achieved a coverage of 55.1%,
which is significantly bettern than that achieved by
the standard heuristic rule for acronym generation.
The algorithm also enables us to have other acronym
candidates together with the probabilities represent-
ing their likelihood.

6.1 Future work

In this paper we did not consider the generation
mechanisms where the letters in the acronym appear
in a different order in the definition. Since about 3%
of acronyms reportedly involve this types of gener-
ation mechanism (Schwartz and Hearst, 2003), we



Top 1 Top 5 Top 10
Feature Templates Coverage (%) Coverage (%) Coverage (%)
UNI 48.2 66.2 74.2
UNI, BI 50.1 71.2 78.3
UNI, BI, TRI 50.4 72.3 80.1
UNI, BI, TRI, HIS 50.6 73.6 81.2
UNI, BI, TRI, HIS, ORT 51.0 73.9 80.9
UNI, BI, TRI, HIS, ORT, LEN 53.9 74.6 81.3
UNI, BI, TRI, HIS, ORT, LEN, DIS 54.4 75.0 81.8
UNI, BI, TRI, HIS, ORT, LEN, DIS, SEQ 55.1 75.4 82.2

Table 7: Performance with Different Feature Sets.

might further improve performance by considering
such permutation of letters.

As the learning curve (Fig 2) suggested, one ob-
vious way to improve the performance is to increase
the training data. The size of the training data used
in the experiments is fairly small compared to those
in other sequence tagging tasks such POS tagging
and chunking. We plan to increase the size of the
training data with a semi-automatic way that could
reduce the human effort for annotation.
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