Paraphrasing Japanese noun phrases using character－based indexing

Tokunaga Takenobu，Tanaka Hozumi and Kimura Kenji Department of Computer Science Tokyo Institute of Technology

Applications of paraphrasing

－Machine translation
－Translation equivalence
－Parallel corpora
－Information Extraction
－Denoting the same events
－Date，Place，Named entities
－Information Retrieval
－Retrieves the same documents
－Query expansion by thesauri

Paraphrasing

－Definition
＂A process of transforming an expression into another while keeping its meaning intact．＂
－What is the basis of semantic equivalence？
－What kinds of clues suggest equivalence？
\rightarrow Application dependent

Aspects of Paraphrasing

－Approaches
－Corpus－based
－Lattice－based matching
－Rule－based
－Morpho－syntactic transformation rules
－Target units
－Words \rightarrow Thesaurus
－Phrases
－Sentences
©2003 Tokunaga Takenobu

Our Approach

－Corpus－based
－Information retrieval
－Character－based indexing
－Natural language processing
－Target
－Japanese noun phrases
－Usable to phrasal index term expansion in information retrieval

Japanese Writing Scripts

－Kanzi（Chinese characters）：ideograms e．g．学（study），通（commute），子（child）
－Hiragana：phonograms e．g．あ，い，う，え，お
－Katakana（imported words）：phonograms e．g．ア，イ，ウ，エ，オ
－Roman alphabet：phonogram

Paraphrase examples

－情報／の／検索（retrieval of information）
\rightarrow 情報／検索（information retrieval）
－STR：XのY \rightarrow XY
－通学／する／子供（a commuting child）
学校／に／通う／子供（a child going to school）
－STR：？？？
－Need to take into account word formation ability of Kanzi

Overview of the Proposed Method

－Store passages in the database with character based indexing
－Given a noun phrase，retrieve passages to give paraphrase candidates
－Filter irrelevant candidates based on syntactic and semantic constraints
－Rank the resulting candidates

Query Expansion

－Replacing an index term in a query with its synonym set
－To solve surface notational variants of index terms
－Referring to a thesaurus which defines equivalence classes of words

Term Weighting

$$
\begin{aligned}
& w(k)= \begin{cases}100 & \begin{array}{l}
\text { if } k \text { is Katakana word or }\langle n u m\rangle \\
100 \times \frac{\log f r\left(k, C_{t}\right)}{} \sum_{k^{\prime} \text { inE }(t)} \log f r\left(k^{\prime}, C_{t}\right)
\end{array} \text { if } k \text { is a Kanzi }\end{cases} \\
& \text { e.g. } \text { \{湯/35, 泉/22, 温/8, スパ, オアシス\} }
\end{aligned}
$$

$$
w(\text { 湯 })=100 \times \frac{\log 35}{\log 35+\log 22+\log 8}=40.7
$$

©2003 Tokunaga Takenobu

Retrieving Passages

- Similarity measure

$$
\operatorname{sim}(I, D)=\sum_{k \in I \wedge k \in D} w(k)
$$

I : Input noun phrase
D : passage
©2003 Tokunaga Takenobu

Constraints

- Semantic constraints

Retrieved passages should contain all concepts mentioned in the input noun phrase

- Syntactic constraints

Retrieved passages should have a syntactically proper structure corresponding to the input noun phrase

Reranking

- Similarity score of passage retrieval
- Distance between words "Counterparts of adjacent words in the input should be located closer in the paraphrase."
- Contextual information Adopts the idea one sense per collocation to disambiguate Kanzi meaning.

Experiments

- Queries

53 queries from BMIR- J_{2}

- Documents

3 years worth of Newspaper articles (Mainichi Shimbun 1991-1993)

- Tools
- GETA retrieval engine
- JUMAN morphological analayzer
- KNP dependency parser

Qualitative Evaluation

－Correct
e．g．冷夏／の／被害（damage by cool summer）
\rightarrow 冷害（cool summer damage）
－Partially correct
－Specific
－General
－Related
－Incorrect

Failure Analysis

－No output for 7 cases．
－No proper paraphrase
e．g．液晶（liquid crystal）
－Limitation of documents collection size
－Three years worth of newspaper articles is not enough
－Mismatch of time period of documents and queries

Conclusions and Future Work

－More improvement is necessary for fully automatic paraphrasing
－Usable for suggesting paraphrases to users
－Novel paraphrases can be extracted
－Easy to judge incorrect ones
－More precise analysis，such as case analysis
－Integration with syntactic transformation

