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[CLSfS ]Memory-Based Learning

selection of the most likely class: finding the
most similar instance in the instance base
(collection of training instances)

no abstraction from data: original data is always
accessible

very appropriate for language learning: can deal
with irregularities, subregularities, etc.

intelligence = good similarity metric, good
weighting of features

Memory-Based Parsing for German – p.3
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selection of the most likely class: finding the
most similar instance in the instance base
(collection of training instances)

no abstraction from data: original data is always
accessible

very appropriate for language learning: can deal
with irregularities, subregularities, etc.

intelligence = good similarity metric, good
weighting of features

Memory-Based Parsing for German – p.3



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]Memory-Based Learning

selection of the most likely class: finding the
most similar instance in the instance base
(collection of training instances)

no abstraction from data: original data is always
accessible

very appropriate for language learning: can deal
with irregularities, subregularities, etc.

intelligence = good similarity metric, good
weighting of features
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[CLSfS ]Memory-Based Learning – Example

NP detection

classification task: decide for each word: NP or not
instance: word + context

instance base (= training data):

prev. w. word next w. prev. POS POS next POS class

will book two md vb cd no-NP

book two flights vb cd nns NP

two flights for cd nns in NP

test instance:
prev. w. word next w. prev. POS POS next POS class

two cars for cd nns in ???

Memory-Based Parsing for German – p.4



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]Memory-Based Learning – Example

NP detection
classification task: decide for each word: NP or not
instance: word + context

instance base (= training data):

prev. w. word next w. prev. POS POS next POS class

will book two md vb cd no-NP

book two flights vb cd nns NP

two flights for cd nns in NP

test instance:
prev. w. word next w. prev. POS POS next POS class

two cars for cd nns in ???
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[CLSfS ]Memory-Based Learning – Example

NP detection
classification task: decide for each word: NP or not
instance: word + context

instance base (= training data):

prev. w. word next w. prev. POS POS next POS class

will book two md vb cd no-NP

book two flights vb cd nns NP
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[CLSfS ]Memory-Based Learning – Example

NP detection
classification task: decide for each word: NP or not
instance: word + context

instance base (= training data):

prev. w. word next w. prev. POS POS next POS class

will book two md vb cd no-NP

book two flights vb cd nns NP

two flights for cd nns in NP

test instance:
prev. w. word next w. prev. POS POS next POS class

two cars for cd nns in ???
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[CLSfS ]Typical MBL Parsing

cascaded classifiers: NP level, PP level, VP
level, clause level, function argument structure
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fü

r
S

pr
ac

hw
is

se
ns

ch
af

t
[CLSfS ]Typical MBL Parsing

cascaded classifiers: NP level, PP level, VP
level, clause level, function argument structure

example:

I saw the man with the white hat
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E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]Typical MBL Parsing

cascaded classifiers: NP level, PP level, VP
level, clause level, function argument structure

example:

NP: [NP] [NP NP] [NP NP]
I saw the man with the white hat
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[CLSfS ]Typical MBL Parsing

cascaded classifiers: NP level, PP level, VP
level, clause level, function argument structure

example:

PP: [PP PP]
NP: [NP] [NP NP] [NP NP]

I saw the man with the white hat
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[CLSfS ]Typical MBL Parsing

cascaded classifiers: NP level, PP level, VP
level, clause level, function argument structure

example:

VP: [VP VP]
PP: [PP PP]
NP: [NP] [NP NP] [NP NP]

I saw the man with the white hat
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[CLSfS ]Typical MBL Parsing

cascaded classifiers: NP level, PP level, VP
level, clause level, function argument structure

example:

CL.: [S S]
VP: [VP VP]
PP: [PP PP]
NP: [NP] [NP NP] [NP NP]

I saw the man with the white hat
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[CLSfS ]Typical MBL Parsing

cascaded classifiers: NP level, PP level, VP
level, clause level, function argument structure

example:

func: SB DO –
CL.: [S S]
VP: [VP VP]
PP: [PP PP]
NP: [NP] [NP NP] [NP NP]

I saw the man with the white hat
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[CLSfS ]Problems with Cascades

recursive structures such as complex clauses:

S � : [S S]

S � : [S S]

the man who bought everything made a fortune

independence assumption:

func: SB SB –

I saw the man with the white hat

in German: long-distance relations:

ON OD OA OA-MOD

ich habe mir Unterlagen zuschicken lassen von Hotels

I have to me brochures sent let of hotels

Memory-Based Parsing for German – p.6
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[CLSfS ]Problems with Cascades

recursive structures such as complex clauses:

S � : [S S]

S � : [S S]

the man who bought everything made a fortune

independence assumption:

func: SB SB –

I saw the man with the white hat

in German: long-distance relations:

ON OD OA OA-MOD

ich habe mir Unterlagen zuschicken lassen von Hotels

I have to me brochures sent let of hotels
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[CLSfS ]New Approach

new idea: find most similar tree in instance base
in one step

for new sentence: grundsätzlich habe ich
Zeit (basically I have time)
find training sentence: da habe ich Zeit (I
have time then)

problem: how define similarity?

problem: what if structure of most similar tree is
not identical?

Memory-Based Parsing for German – p.7
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[CLSfS ]New Approach

new idea: find most similar tree in instance base
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[CLSfS ]New Approach

new idea: find most similar tree in instance base
in one step

for new sentence: grundsätzlich habe ich
Zeit (basically I have time)
find training sentence: da habe ich Zeit (I
have time then)

problem: how define similarity?

problem: what if structure of most similar tree is
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[CLSfS ]New Approach

new idea: find most similar tree in instance base
in one step

for new sentence: grundsätzlich habe ich
Zeit (basically I have time)
find training sentence: da habe ich Zeit (I
have time then)

problem: how define similarity?

problem: what if structure of most similar tree is
not identical?
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[CLSfS ]Adapting the Most Similar Tree

very conservative approach: only delete parts
from retrieved tree, never add !

example: new sentence am Dienstag habe
ich Zeit (on Tuesday I have time)
training sentence: am Dienstag den
dreizehnten von zehn bis zwölf habe
ich Zeit (on Tuesday the thirteenth from ten
to twelve I have time)

Memory-Based Parsing for German – p.8
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[CLSfS ]Adapting the Most Similar Tree

very conservative approach: only delete parts
from retrieved tree, never add !

example: new sentence am Dienstag habe
ich Zeit (on Tuesday I have time)
training sentence: am Dienstag den
dreizehnten von zehn bis zwölf habe
ich Zeit (on Tuesday the thirteenth from ten
to twelve I have time)
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[CLSfS ]Adapting the Most Similar Tree

tree:
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[CLSfS ]Preprocessing – Example

sentence: da muß ich leider zu einem
Treffen nach Köln (unfortunately I have to
go to Cologne for a meeting)

[simpx TnT (Thorsten Brants)
[da da] tagfixing (Steve Abney)
[vmfinmuß] CASS (Steve Abney)
[nx4

[pper ich]]
[advx

[adv leider]]
[px

[zu zu]
[nx1

[art einem]
[nn Treffen]]]

[px
[appr nach]
[nx1

[ne Köln]]]]

Memory-Based Parsing for German – p.10
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[CLSfS ]Preprocessing – Example

sentence: da muß ich leider zu einem
Treffen nach Köln (unfortunately I have to
go to Cologne for a meeting)
[simpx TnT (Thorsten Brants)

[da da] tagfixing (Steve Abney)
[vmfinmuß] CASS (Steve Abney)
[nx4

[pper ich]]
[advx

[adv leider]]
[px

[zu zu]
[nx1

[art einem]
[nn Treffen]]]

[px
[appr nach]
[nx1

[ne Köln]]]]
Memory-Based Parsing for German – p.10



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]Weighting Features?

Standard weighting techniques are
impossible:

sequential information more important:
DET N V ADJ vs. ADJ, DET, N, V

no windowing approach: find tree in one step
use all features different number of features

selecting a complete tree: very difficult task
need all words and all other types of
information as features

suggested solution: backing off strategy instead
of weighting

Memory-Based Parsing for German – p.11
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[CLSfS ]Weighting Features?

Standard weighting techniques are
impossible:

sequential information more important:
DET N V ADJ vs. ADJ, DET, N, V

no windowing approach: find tree in one step
use all features different number of features

selecting a complete tree: very difficult task
need all words and all other types of
information as features

suggested solution: backing off strategy instead
of weighting
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[CLSfS ]The Parsing System

backing off: 2 main modules:

search in a word prefix trie
allowing the omission of words or phrases /
chunks in input sentence as well as training
sentences

backing off to less reliable information:

1. search for POS sequence
2. search for longer trees and shorten them
3. search for chunk sequences with matching

heads
4. search for chunk sequences (without

matching heads)
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sentences

backing off to less reliable information:

1. search for POS sequence

2. search for longer trees and shorten them
3. search for chunk sequences with matching

heads
4. search for chunk sequences (without

matching heads)

Memory-Based Parsing for German – p.12



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]The Word Trie
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[CLSfS ]The Omission of Words in the Trie

sentence: wie sieht das ab dem
fünfundzwanzigsten aus (how does that look
from the twenty fifth on)
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fü

r
S

pr
ac

hw
is

se
ns

ch
af

t
[CLSfS ]The Omission of Words in the Trie

sentence: wie sieht das ab dem
fünfundzwanzigsten aus (how does that look
from the twenty fifth on)

wie

sieht

bei

Ihnen

der

Mai

aus

das

aus bei

Ihnen

aus

denn

ab

dem

fünfundzwanzigsten

aus
Memory-Based Parsing for German – p.14



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]The Resulting Parse
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[CLSfS ]Backing Off – Matching Chunks

input sentence:
[simpx [px ab Donnerstag] [fcop bin] [nx4
ich] [advx wieder] [advx hier]]

identical chunk structure from training data:
[simpx [px ab Donnerstag dem dritten]
[fcop bin] [nx4 ich] [advx wieder] [advx
hier]]

identical chunk structure from training data:
[simpx [px nach einer langen Woche] [fcop
sind] [nx4 Sie] [advx wieder] [advx zurück]]
(after a long week you will be back again)
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fü

r
S

pr
ac

hw
is

se
ns

ch
af

t
[CLSfS ]Backing Off – Matching Chunks

input sentence:
[simpx [px ab Donnerstag] [fcop bin] [nx4
ich] [advx wieder] [advx hier]]

identical chunk structure from training data:
[simpx [px ab Donnerstag dem dritten]
[fcop bin] [nx4 ich] [advx wieder] [advx
hier]]

identical chunk structure from training data:
[simpx [px nach einer langen Woche] [fcop
sind] [nx4 Sie] [advx wieder] [advx zurück]]
(after a long week you will be back again)

Memory-Based Parsing for German – p.16



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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[CLSfS ]Tree Modification
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[CLSfS ]Evaluation

recall (syntactic) 82.45%
precision (syntactic) 87.25%
F � 84.78
recall (+ func. cat.) 71.72%
precision (+ func. cat.) 75.79%
F � 73.70
unattached const. in recall 7.14%
unattached const. in precision 7.60%
func. recall (att. const.) 95.31%
func. precision (att. const.) 95.21%
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[CLSfS ]Leave-One-Out Evaluation

using 5 000 test sentences:

recall (syntactic) 85.15%
precision (syntactic) 89.34%
F � 87.19
recall (+ func. cat.) 76.00%
precision (+ func. cat.) 79.65%
F � 77.78
func. recall (att. const.) 96.56%
func. precision (att. const.) 96.48%
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[CLSfS ]Conclusion

new definition of parsing task: find complete
most similar tree; adapt this tree to input

needs: POS tagger, chunk parser, treebank

uses a backing off strategy instead of (standard)
feature weighting

results still worse results than state of the art
statistical parsers

future work: increase training data, include
morphological information, use different (ML)
chunk parser, evaluate on different data sets
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fü

r
S

pr
ac

hw
is

se
ns

ch
af

t
[CLSfS ]Conclusion

new definition of parsing task: find complete
most similar tree; adapt this tree to input

needs: POS tagger, chunk parser, treebank

uses a backing off strategy instead of (standard)
feature weighting

results still worse results than state of the art
statistical parsers

future work: increase training data, include
morphological information, use different (ML)
chunk parser, evaluate on different data sets

Memory-Based Parsing for German – p.20



E
B

E
R

H
A

R
D

K
A

R
L

S
U

N
IV

E
R

S
IT

Ä
T

T
Ü

B
IN

G
E

N
S

em
in

ar
fü
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