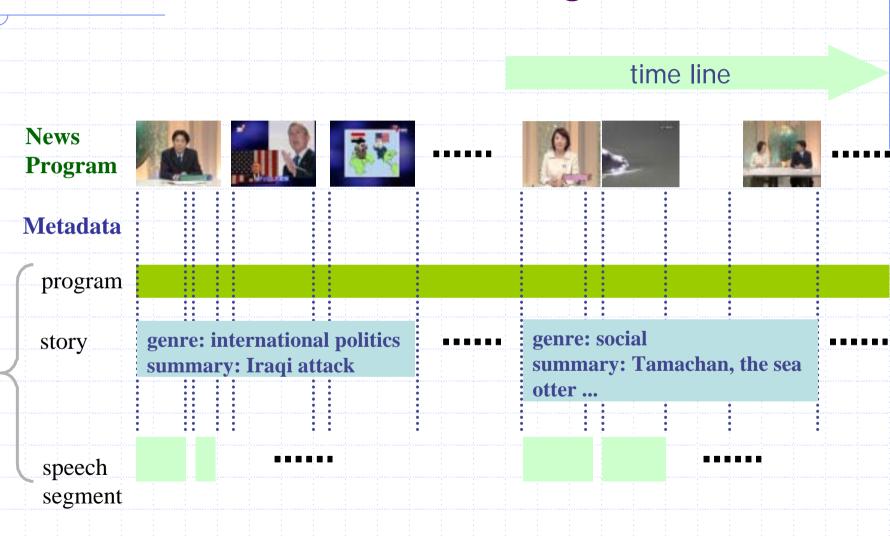
Speech-Based Content Indexing System for Broadcast News

Yoshihiko Hayashi
NTT Cyberspace Laboratories
mailto:hayashi.yoshihiko@lab.ntt.co.jp

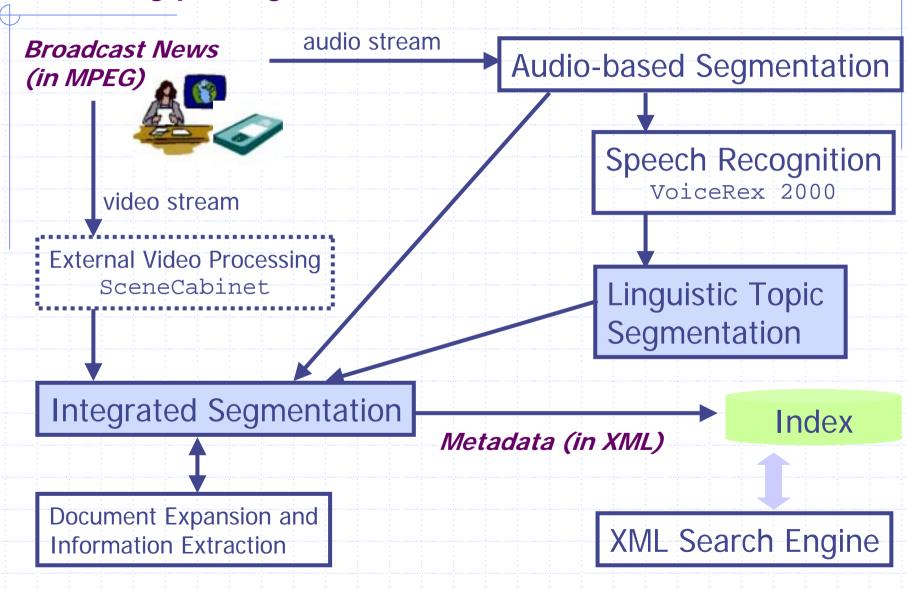
Thanks to: Katsutoshi Ohtsuki, Katsuji Bessho, Osamu Mizuno, Yoshihiro Matsuo, Shoichi Matsunaga, Takaaki Hasegawa, Naruhiro Ikeda, and Minoru Hayashi

Content

- Motivation
 - Metadata Bottleneck
 - Why News Programs?
- System Overview
 - Demonstration
- Techniques for News Story Segmentation
 - Audio-based Segmentation
 - Automatic Speech Recognition
 - Topic Segmentation from ASR transcription
 - Integrated Segmentation: Media Fusion
- Evaluation
- Conclusions and Future Works


Motivation - Metadata Bottleneck -

- Metadata is
 - useful in discovering and utilizing existing information resources (contents)
 - essential for non-textual content
 - however, costly if we are to create it
 - inevitably so for non-textual content
- Metadata Bottleneck
 - there is a bottleneck in metadata creation
 - media processing (speech recognition, character recognition, image recognition, etc.) and natural language processing are key to break the bottleneck
- to begin with the project
 - primal target: broadcast news program

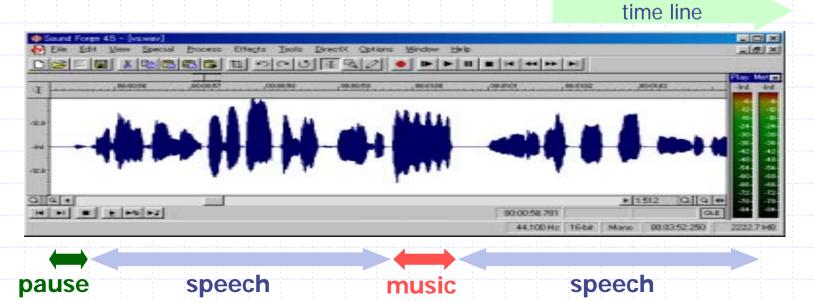

Why Broadcast News Program?

- The semantic intent is mainly conveyed by the speech uttered by the anchors
- The speech is usually fluent and clear (acoustic/linguistic)
 - adequate for applying current-level automatic speech recognition (ASR)
 - NLP can be applicable after the speech-to-text process
- News program has relatively clear structure
 - Example: Opening, Leading index, Story-1, Story-2, ...,
 Story-n, Weather forecast, Market information, Closing
 - Chance to apply NLP for structuring the entire program (automatic story segmentation)

Structure of the News Program Metadata

Prototype System Overview

Demonstration

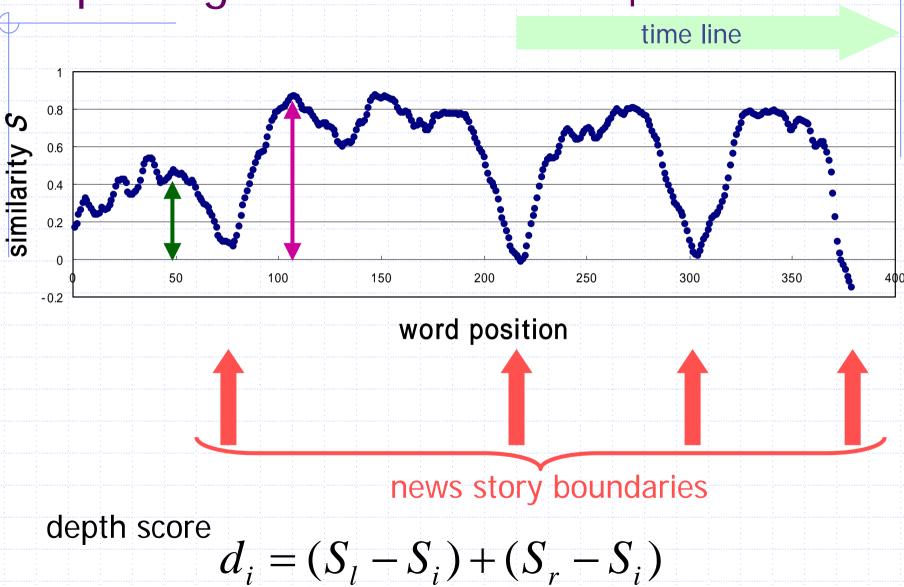


Playback a news story with open-caption (speech-recognized)

KW Search

Audio-based Segmentation

- segments audio stream into a set of intervals, each of them is assigned one of the following class labels: speech, music, noise, silence
- based on supervised learning method
- using some distinctive acoustic features
- highly accurate, particularly in extracting speech intervals (~96% in F-measure)


Automatic Speech Recognition - VoiceRex -

- Input: a speech segment
- Output: time-stamped morphological information
 - pronunciation, part-of-speech, information from the dictionary
 - confidence measure (acoustic/linguistic)
- Acoustic model
 - can utilize multiple models (male/female/gender-free)
 - chooses the best one by GMM (Real Time Factor: 1.4)
- Language model
 - tri-gram learned from 600k sentences
 - vocabulary: 30k words
- Recognition accuracy (in WER)
 - speaker: anchor (15.7%) ~ reporter (28.4%)
 - noise: clean (19.2%) ~ very-noisy (35.4%)
 - style: read (18.1%) ~ spontaneous (30.4%) ~ free (59.7%)

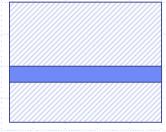
Topic Segmentation - Algorithm Overview -

- Input: a sequence of ASR transcriptions, each of them comes from a speech segment
- Output: topic boundaries
- Procedure
 - preparation: constructs "concept-base"
 - pre-processing:
 - remove "stop-words" from the input
 - assign "concept-vector" to each remaining content word
 - for each sliding windows
 - compute centroid concept vector for the window
 - compute similarity values with the adjacent window, via cosine measure
 - smooth the similarity values
 - choose the topic boundaries by looking at the "depth scores"

Topic Segmentation - An Example -

Topic Segmentation - Concept-Base -

content bearing words (1.5k)

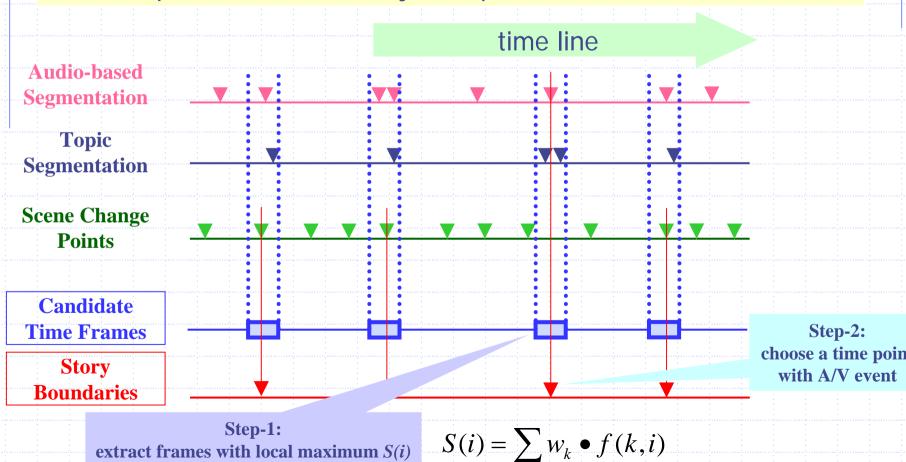

\bigcirc					
(30K)		•••	computer	•••	disease
high-frequency words				•••	
	Internet		403	•••	3
		• •		•••	
	virus	•••	61	•••	312
high-		•••	•••	•••	• • •

30k

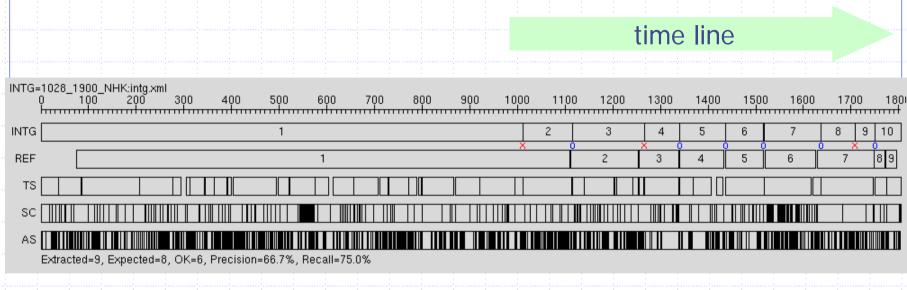
Singular Value Decomposition

reduces a high-dimensional sparse matrix to lower-dimensional dense matrix

Matrix: concept-case


Row Vector: concept vector

Integrated Segmentation - Algorithm Overview -


Two Step Algorithm:

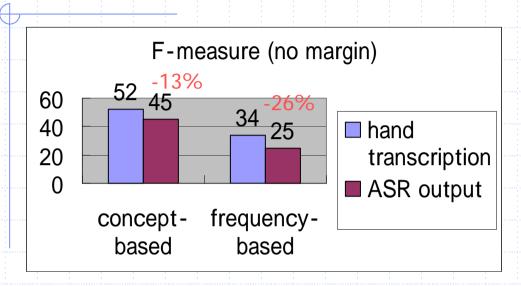
extract frames with local maximum S(i)

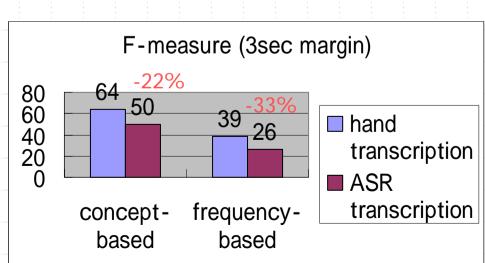
- •1-st Step: extract candidate time frames by calculating score values
- •2-nd Step: choose a boundary time point from each candidate

Integrated Segmentation - An Example -

A 30-min. TV News without CM, 2002 10/28

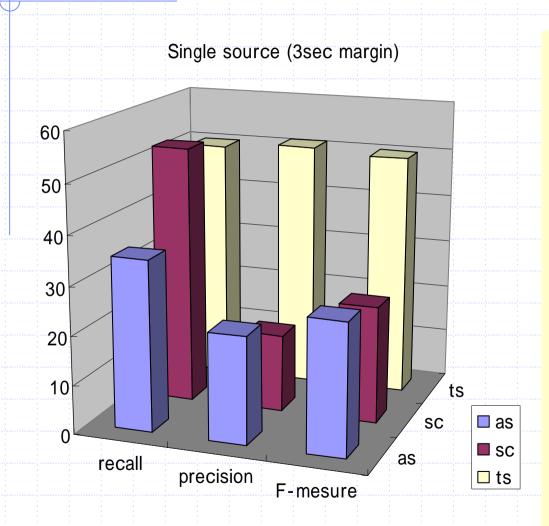
INTG: result from the integrated segmentation

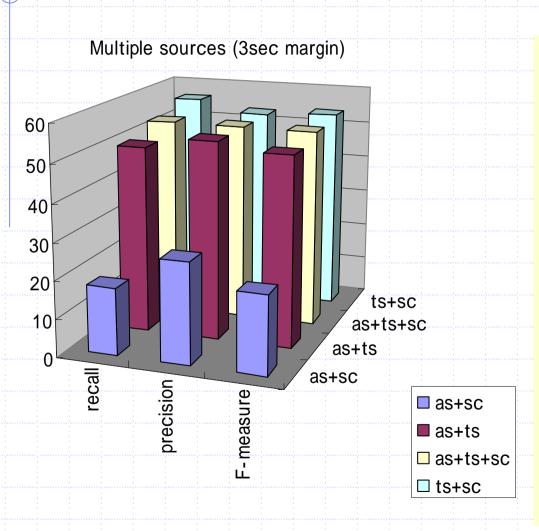

REF: human-annotated reference (correct)


TS: Topic Segmentation result

SC: Scene Change detection result

AS: Audio-based Segmentation results


Evaluation - Topic Segmentation -


- •Data: twelve TV news programs (total: 195 minutes, almost 1,000 sentences, 26k tokens)
- •not accurate as artificial data (cf. ~80% in [Bessho 2003])
- degradation in ASR output cannot be ignored (13%~33%)
- •concept-based method is more robust to the ASR errors than the frequencybased (Hearst) method (13%-26%, 22%-33%)

Evaluation - Integrated Segmentation (1/2) -

- •non-linguistic processing, such as (audio-based segmentation) and sc (scene-change based segmentation) are not powerful as the linguistic processing ts (topic segmentation)
- non-linguistic processing (as and ts) are recalloriented methods
- •These are reasonable, because news programs are speech/language-centered contents

Evaluation - Integrated Segmentation (2/2) -

- non-linguistic processing
 (as+sc) is clearly insufficient
 speech-based and
 audio/visual-supported
 processing (as+ts+sc)
 (as+ts), (sc+ts) are slightly
 better than linguistic
 processing (ts) alone! (but
 not very significant...)
- probably, there are plenty of rooms to improve the accuracy by integrating the audio/visual results in better ways

Conclusions

- A prototype indexing system with search/access interface is developed and demonstrated
 - ASR and succeeding NLP play an essential role for speechcentered news programs
- Evaluation results from the small-sized preliminary experiments are shown
 - not perfect yet, but promising
 - audio/visual information may further improve the story segmentation accuracy
- More efforts are necessary for realizing automatic content metadata creation and the associated advanced search/access functions
 - even if, "ad hoc" SDR (Spoken Document Retrieval) in news domain is a solved problem, as claimed by TREC people

Future Works

- More evaluations...
- Improve segmentation accuracy
 - improve topic segmentation accuracy by using reliably recognized tokens (use of ASR confidence measure)
 - seek better "blend" in the integrated segmentation
 - last resort?: use of pre-knowledge about structure of the target news programs
- More NLP
 - Event extraction and tracking (TDT)
 - Summary generation (from collapsed ASR transcriptions)
- Search/Access system design
- Other types of content: documentaries, lectures, meeting, etc.
 - improve the robustness of the ASR for spontaneous/free speech
 - beyond the topic segmentation...

References

- in English
 - [Hayashi 2003a] Y.Hayashi, et.al: Speech-based and Videosupported Indexing of Multimedia Broadcast News, SIGIR 2003 poster, to appear, 2003
 - [Hayashi 2003b] Y.Hayashi, et.al: Speech and Language Processing for Content Description Metadata for Broadcast News, NTT Technical Review, Vol.1, No.3, pp.62-65, 2003
- in Japanese
 - [大附 2003] 大附,別所,水野,松尾,林: 音声認識を用いたマルチメディアコンテンツのインデクシング,情報処理学会 第47回音声言語情報処理研究会, to appear, 2003
 - [水野 2003] 水野,大附,松永,林: ニュースコンテンツにおける音響 信号自動判別の検討,電子情報通信学会 総合大会, D-14-19, 2003
 - [別所 2003] 別所,大附,松永,林: 概念ベクトルの結束性によるトピックセグメンテーション精度の評価,言語処理学会 第9回年次大会, B7-7, 2003