Extracting Complex Biological Events with Rich Graph-Based Feature Sets

5.6.2009 BioNLP'09

Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola, Tapio Pahikkala and Tapio Salakoski

Faculty of Mathematics and Natural Sciences, IT-department
Introduction

- Three-step approach to event extraction
 - Trigger detection
 - Argument detection
 - Semantic post-processing
- Graph-based representations of both syntactic and semantic data
- Machine learning with SVMs (Joachims SVMMulticlass)
Graph Representation

<table>
<thead>
<tr>
<th>IL-4 gene regulation involves NFAT1 and NFAT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7 Protein IL-4 T29 Regulation regulation</td>
</tr>
<tr>
<td>T8 Protein NFAT1 T30 Regulation involves</td>
</tr>
<tr>
<td>T9 Protein NFAT2 E10 Regulation:T29 Theme:T7</td>
</tr>
<tr>
<td>E11 Regulation:T30 Theme:E10 Cause:T9</td>
</tr>
<tr>
<td>E12 Regulation:T30 Theme:E10 Cause:T8</td>
</tr>
</tbody>
</table>
Graph Representation

Semantic network has one-to-one correspondence to task annotation
Graph Representation

- Overlapping nodes are discarded → one potential node per word token
Graph Representation

- Overlapping nodes are discarded → one potential node per word token
Graph Representation

- Overlapping nodes are discarded → one potential node per word token
- Flat graph is *extraction target*
- Semantic post-processing reduplicates nodes
Dependency Parses

- Collapsed Stanford format, McClosky-Charniak parser
- >45% of event arguments are separated by a single dependency (shortest path)
Preparing the Data

- We process one sentence at a time
- Events between sentences are discarded
- 95% of all annotated events are within one sentence
Extraction Process

1. Trigger Detection

2. Edge Detection

3. Semantic Post-Processing

Events
Trigger Detection

- Trigger type is predicted per token

Protein

IL-4 gene regulation involves NFAT1 and NFAT2 .
Trigger Detection

- Trigger type is predicted per token

Protein	Neg	Regulation	Regulation involves	Protein	Neg	Protein
IL-4 | gene | regulation |
NFAT1 | and |
NFAT2
Trigger Detection

- Trigger type is predicted per token
- Trigger nodes are formed based on token predictions

Protein	Regulation	Regulation	Protein	Protein
IL-4 | gene regulation | involves | NFAT1 | and | NFAT2
Trigger Detection (details)

- Adjacent triggers with same type are merged, if merged string has been seen in training data (not in the example shown)
- Overlapping triggers of different types can be predicted with merged type classes
- 9 trigger types → multi-class classification

Protein

IL-4
gene regulation

Regulation

involves

Protein

NFAT1 and NFAT2.
Trigger Detection Features

- **Token features**
 - Character n-grams, stem, heuristics

- **Frequency features**
 - Number of entities, bag-of-word counts

- **Dependency N-grams**
 - Undirected chain of dependencies and tokens
 - Up to depth of three
Edge Detection

- Edges are predicted between named entities and predicted triggers

<table>
<thead>
<tr>
<th>Protein</th>
<th>Regulation</th>
<th>Regulation</th>
<th>Protein</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4</td>
<td>gene</td>
<td>regulation</td>
<td>involves</td>
<td>NFAT1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and</td>
<td>NFAT2</td>
</tr>
</tbody>
</table>
Edge Detection

- Edges are predicted between named entities and predicted triggers
- Result is a flattened event graph

```
Protein  <Theme>  Regulation  <Theme>  Cause>  Cause>
   IL-4    gene regulation involves    Protein    Protein
        and     NFAT1    NFAT2
```
Edge Detection

- Several potential edges between entities
- Classes *theme*, *cause* and *negative*
- All edges predicted independently
Edge Detection Features

- Mostly based on the *shortest path of dependencies*
- Training data for edge detector
 - 31 792 examples
 - 295 034 unique features
Edge Detection Features

- Dependency N-grams
 - 2-4 consecutive dependencies and tokens
- Semantic node features
 - Built from the end nodes of the potential edge
- Frequency features
 - Length of shortest path, number of entities and triggers in sentence
Semantic Post-processing

- Shared task restricts event arguments
 - Remove invalid edges from graph
- Predicted graph contains max one node per word token, per event type
 - Duplicate trigger nodes for overlapping events
- Convert graph to shared task format
- Rule-based system
Semantic Post-processing

- To recover events, some semantic network nodes need to be duplicated

```
Protein  Regulation  Regulation  Protein  Protein
IL-4     gene regulation involves NFAT1 and NFAT2

Protein  Regulation  Regulation  Protein  Protein
IL-4     gene regulation involves NFAT1 and NFAT2
```
Semantic Post-processing

- Graph processing based on trigger node type
Results

- Approximate Span & Recursive 51.95% (primary measure of task 1)
- Approximate Span 51.72%
 - Only a few nesting events
- Strict 47.41%
 - Trigger spans explain most of the difference vs. the primary measure
Effect of Components

- Predictions (pred) of a single component at a time are replaced with gold-standard (GS) data
- Shows impact of component on overall performance

<table>
<thead>
<tr>
<th>Triggers</th>
<th>Edges</th>
<th>Post-processing</th>
<th>F</th>
<th>ΔF</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred</td>
<td>pred</td>
<td>pred</td>
<td>53.50</td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td>pred</td>
<td>pred</td>
<td>72.08</td>
<td>18.58</td>
</tr>
<tr>
<td>GS</td>
<td>GS</td>
<td>pred</td>
<td>94.69</td>
<td>22.61</td>
</tr>
<tr>
<td>GS</td>
<td>GS</td>
<td>GS</td>
<td>100</td>
<td>5.31</td>
</tr>
</tbody>
</table>
Alternative Directions

- Several attempts to relax independence assumptions
 - Graph reranking for argument edges
 - Structural SVM with Hidden Markov models for trigger detection
- Coreference detection for 4.8% of events crossing sentence boundaries (machine learning)
Conclusions

- Splitting the task into subproblems
- Careful feature engineering
- Thorough optimization of parameters for each subtask
- Program to be published under open source license
Thank You!

- BioNLP'09 Shared Task team
- BioNLP'09 and NAACL organizers
- Academy of Finland
- CSC – IT Center for Science Ltd.