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Abstract 

Natural language processing technologies 

have advanced remarkably in the past two 

decades.  However, biological terminology is 

a frequent cause of analysis errors when 

processing literature written in the biology 

domain. The BOOTStrep BioLexicon is a 

linguistic resource tailored for the domain to 

cope with these problems.  It contains the 

following types of entries: (1) a set of 

terminological verbs; (2) a set of derived 

forms of the terminological verbs; (3) general 

English words frequently used in the biology 

domain; (4) domain terms. This 

comprehensive coverage of biological terms 

makes the lexicon a unique linguistic resource 

within the domain.  This paper focuses on the 

linguistic aspects of the lexicon. 

1  Introduction 

Over the past twenty years, there have been 

remarkable advances in natural language 

processing (NLP) and text mining (TM) 

technologies.  Various practical NLP/TM tools, 

such as part-of-speech taggers, chunkers, syntactic 

parsers and named entity recognizers, are now 

widely available.    

However, text in biology exhibits different 

characteristics from general language documents 

such as newspaper articles.  The biology domain 

demonstrates strong demands for the results of  

NLP/TM.  However, it is also one of the most 

challenging domains for text processing 

(Ananiadou and McNaught, 2006). 

 

Lack of coverage of the following types of 

terminological information makes NLP/TM tasks 

in this domain difficult: 

 

• Large-scale domain-specific terminologies 

• Domain-specific word usage 

• Domain-specific relations between words 

 

Technical terms are a major barrier to bio-text 

processing. A huge number of biological, chemical 

and medical terms appear in the literature and new 

terms are coined every day.  Furthermore, there are 

many spelling and semantic variants of these terms 

representing the same biomedical entities in 

different written forms.  For example, the 

BioThesaurus
1

 contains more than 15 million 

gene/protein names, but still it does not cover the 

wide variety of variants of gene/protein names 

actually appearing in the literature.  

Word usage can be idiosyncratic to the bio-

domain as well.  For example, express often 

indicates a specific biological process, gene 

expression, and takes as arguments specific types 

of named entities, such as gene and protein names.   

In addition, there are many cases where words 

are related in a biology-specific manner.  For 

example, the verb retroregulate has 

retroregulation as its nominal form and 

retroregulatory as its adjectival form.  This extent 
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of derivational relations between words in the 

biological domain cannot be fully covered by 

general English dictionaries and thesauri, e.g., 

WordNet. To the best of our knowledge, there is 

no biology-specific lexicon that addresses the 

above linguistic issues.   

2 Overview of the BioLexicon 

Figure 1 shows an overview of the BioLexicon.  It 

consists of four part-of-speech categories: verb, 

noun, adjective, and adverb. Each category 

accommodates terminological words and general 

language words.  Biology terms, e.g., gene/protein 

names, are either gathered from existing databases 

or automatically extracted from text.  Other 

terminological words and their relations are 

manually curated. Inflections of general words are 

manually curated based on the MedPost dictionary 

(Smith et al., 2004).  

The database model of the lexicon follows the 

Lexical Markup Framework (LMF) (Francopoulo 

et al., 2006).  The details of the database model 

were reported in Quochi et al. (2008).  

3 Biology-relevant terminologies 

The terminologies in the lexicon are fivefold: (1) 

verbs, (2) adjectives, (3) adverbs; (4) 

terminological nouns, and (5) biomedical terms. 

(1) – (4) have been manually curated. 

 

(1) Terminological verbs 

759 base forms (4,556 inflections) of 

terminological verbs.   

 

(2) Terminological adjectives 

1,258 terminological adjectives.   

 

(3) Terminological adverbs 

130 terminological adverbs. 
 

(4) Nominalized verbs 

1,771  nominalized verbs.   

 

(5) Biomedical terms 

Currently, the BioLexicon contains biomedical 

terms in the categories of cell (842 entries, 1,400 

variants), chemicals (19,637 entries, 106,302 

variants), enzymes (4,016 entries, 11,674 variants), 

diseases (19,457 entries, 33,161 variants), genes 

and proteins (1,640,608 entries, 3,048,920 

variants), gene ontology concepts (25,219 entries, 

81,642 variants), molecular role concepts (8,850 

entries, 60,408 variants), operons (2,672 entries, 

3,145 variants ), protein complexes (2,104 entries, 

2,647 variants), protein domains (16,940 entries, 

33,880 variants), Sequence ontology concepts 

(1,431 entries, 2,326 variants), species (482,992 

entries, 669,481 variants), and transcription factors 

(160 entries, 795 variants).   

In addition to the existing gene/protein names, 

70,105 variants of gene/protein names have been 

newly extracted from 15 million MEDLINE 

abstracts. Section 5 describes the methods used. 

3.1 Terminological verbs  

Terminological verbs have been manually curated 

through examination of biomedical literature.  As a 

result, 759 verbs were selected. 

Following the selection of verbs, three types of 

orthographic variants were added to the lexicon.   

 

- British/American spelling variants 

e.g., acetylise (British)/acetylize (American) or 

harbour (British)/harbor (American)  

 

- Hyphenation variants 

    e.g., co-activate and coactivate 

 

- Combination of the above two 

e.g., co-localise (British), colocalise (British), 

co-localize (American), colocalize (American)   

 

Inflectional forms are all enumerated in our 

lexicon.  The following verbal inflections have 

been completely curated. 

gene/protein names

chemical, disease, 

enzyme, species 

names,...

new gene/protein names

Verb subcategorization 

frames

general nouns

MEDLINE corpus

Biomedical DBs

Terminological verbsTerminological verbs

Nouns

Verbs

Adjectives

Adverbs

Derived adjectivesDerived adjectives

repressrepressed, repressive,

repressible
repression

repressor

repressibility

Nominalized verbsNominalized verbs

Derived adverbsDerived adverbs

repressively

General verbs

General adjectives

General adverbs

NER+NormalizationNER+Normalization

Figure 1  Overview of the Lexicon 



 

VV base form 

VVD past tense 

VVN past participle 

VVZ third person singular present 

VVG gerund or present participle  

 

The above parts-of-speech follow the Penn 

Treebank POS tags (Santorini, 1990). 

 

3.2 Derived forms of terminological verbs 

Our strategy was to expand the terminology from 

terminological verbs to derived forms. Three types 

of derivational relations of the terminological verbs 

have been introduced.  Frequently, nominalized 

verbs play the same role as verbs.  Adjectival and 

adverbial derived forms may also be used to 

represent biological events and processes in the 

same context as their associated verbs. For text 

mining applications, it is important to cover these 

possibilities as far as those derivations are 

linguistically correct.  

 

(1) Nominalization 

    Nominalized verbs are verbs that are used as 

nouns.  A verb can be nominalized with or without 

morphological transformation.  For example, the 

nominalized forms of regulate are regulation and 

regulator.  Following Comrie and Thompson 

(2007), we identified two kinds of nominalization. 

 

(i) Action/state nouns 

The noun expresses an action or state of the verb 

from which it is derived, e.g.,  

 

act (v) →  action (n), 

act (v) → act (n),  

act (v) →  acting (n). 

 

(ii) Agentive nouns 

The noun has an 'agent' role to the verb from 

which it is derived, e.g.,  

 

act (v) →  actor (n) 

 

(2) Adjectival derivation 

The derivational relation between adjectives and 

the verbs from which they are derived was 

manually curated, because there is no dictionary 

that fully covers adjectival derivations of 

biological terms. E.g.,  

 

act (v) →  actable (adj.),  

act (v) → active (adj.). 

 

(3) Adverbial derivation 

   The derivational relation between adverbs and 

the verbs from which they are derived were also 

manually curated, e.g.,  

 

act (v) →  actively (adv.) 

 

3.3 Biomedical terms  

Existing biological databases have served as the 

first source of many nominal types of terms 

represented in the BioLexicon. Detailed 

information can be found on the BOOTstrep web 

site. (Bootstrep, 2008).  Such resources are 

characterized by a high coverage of biological 

entities and they contain terms annotated with 

widely recognized and interoperable accession 

number (e.g., UniProt). On the other hand, some 

terms imported from existing resources are 

assigned to concept identifiers in the process of 

automatic curation. Moreover, although biological 

ontologies and controlled vocabularies are meant 

to represent a wide range of concepts, they are not 

designed to reflect the exact wording found in the 

scientific literature. Therefore, some initial 

filtering of potential terms was necessary before 

they could be included in the BioLexicon. As an 

example, terms of proteins identified in the course 

of high-throughput experiments such as 

hypothetical protein were ignored due to their low 

information value. Also, a small number of highly 

ambiguous terms such as generic enzyme names 

were manually annotated as such. Other 

indications of a term’s discriminatory power 

available in the BioLexicon include its frequency 

in Medline and the British National Corpus, as 

they have proven useful in the task of named entity 

recognition (Pezik et al., 2008). 

The choice of these types of terms can be 

explained in two ways. Firstly, we felt it necessary 

to include the most common semantic types 

relevant to the biology domain, such as terms 

denoting gene and protein names, as well as terms 

for chemicals of biological interest or species 



names. Secondly, including the smaller and more 

focused sets for terms such as operon names or 

sequence ontology terms was motivated by the 

intention to provide links from the BioLexicon to 

the Gene Regulation Ontology (Beisswanger et al., 

2008) and make it suitable for text mining 

applications dealing with gene regulation topics. 

4 General language words 

To cover general language words that are used in 

biology, we have adopted words from the MedPost 

dictionary. This is distributed as a part of the 

MedPost POS tagger package and is available 

copyright free.
1
 The dictionary consists of words 

appearing in MEDLINE abstracts. 

 

The following numbers of entries were 

generated. 

 

• 496 verbs (2,976 inflectional forms) 

• 2,316 adjectives (2,385 inflectional forms) 

• 428 adverbs (440 inflectional forms) 

• 5,012 nouns (6,182 inflectional forms) 

 

Inflections produced for verbs from the 

MedPost dictionary are the same as for 

terminological verbs.  The POS types NN and 

NNS were assigned to the singular and plural 

forms of nouns, respectively.  

Comparative and superlative forms of 

adjectives and adverbs were completed on the 

basis of the MedPost dictionary entries.  

Since that dictionary was created for the 

purposes of a statistical POS tagger for the 

biomedical domain, it is incomplete from a 

linguistic point of view.  For example, common 

and commonest are accommodated by the 

dictionary; however, commoner is not. Therefore, 

inflections of words in the dictionary were 

manually curated and added to the BioLexicon. 

 5 Biological term variants extracted from 

text 

In addition to biomedical terms gathered from 

existing databases, the lexicon accommodates new 

variants of gene/protein names extracted from text. 
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The extraction process consists of two steps. 

The first step identifies gene/protein names in text. 

Then, the second step maps new variants to 

existing entries. 

This section provides a brief summary of the 

named entity recognition (NER) and term 

normalization used to populate the lexicon with 

gene/protein names extracted from biomedical 

literature. 

5.1 Named Entity Recognition 

For NER, we used our dictionary-based statistical  

named entity recognition tool (Sasaki et al., 2008). 

The tool was trained with Conditional Random 

Fields (CRFs) (Lafferty et al., 2001) on the 

JNLPBA-2004 training data (Kim, 2004) and the 

Genia corpus (version 3.02) (Kim et al., 2003).  

The test data used is the JNLPBA-2004 test set, 

which is a set of tokenized sentences extracted 

from 404 separately collected MEDLINE abstracts, 

where the term class labels were manually 

assigned, in accordance with the annotation 

specification of the Genia corpus. 

Following the data format of the JNLPBA-2004 

training set, our training and test data use the IOB2 

labels, which are “B-protein” for the first token of 

the target sequence, “I-protein” for each remaining 

token in the target sequence, and “O” for other 

tokens. The window size was set to ±2 tokens of 

the current token. 

Table 1 shows the evaluation results. Results 

are expressed according to recall (R), precision (P), 

and F-measure (F), which here measure how 

accurately the various experiments determine the 

left boundary (Left), the right boundary (Right), 

and both boundaries (Full) of protein names.  The 

The F-score of the model trained with all the 

features was 73.78, which is the second best score 

for protein name recognition among research 

reported using the standard JNLPBA-2004 data set. 

Gene/protein names identified by CRF 

classifiers with a probability greater than 99% are 

  R P F 

Sequential  

labeling 

Full 

Left 

Right 

79.85 

84.82 

86.60 

68.58 

72.85 

74.37 

73.78 

78.38 

80.02 

Table 1  NER performance 



selected as new gene/protein variant candidates 

from 15 million MEDLINE abstracts. 

5.2 Term mapping  

Terms automatically extracted from text were 

mapped to existing gene/protein name entries, 

which are given standard semantic identifiers 

called UniProt Accession Numbers. For efficiency 

reasons, term mapping was conducted through 

term normalization. Since the lexicon contains 

about two million gene/protein names, 

straightforward similarity calculation of term pairs 

is not practical: when an NER component extracts 

tens of millions of gene/protein name candidates 

from a corpus, the similarity distance of 2⋅10
13

 

pairs of terms must be calculated. This amount of    

computation can be drastically reduced to 10
7
 

normalizations and index lookups.   

The normalization steps are as follows: 

 

1.  Create an inverse index that maps 

normalized forms to UniProt Accession 

Numbers. 

2. Normalize newly extracted terms. 

3. Lookup the inverse index to find UniProt 

Accession Numbers of the new terms. 

 

There are several ways to normalize biomedical 

terms.  We employed a method (Tsuruoka et al., 

2007) where the normalization rules were 

automatically generated from a dictionary in which 

terms are clustered according to UniProt Accession 

Numbers.  A brief summary of the method is as 

follows: 

The method finds string-rewriting rules one by 

one based on the following complexity measure: 

 

(complexity)=(ambiguity)× (variability)
α
 

 

where the ambiguity quantifies how ambiguous the 

terms are in the dictionary, the variability value 

quantifies how variable the terms are, and  α is the 

constant that determines the trade-off between 

ambiguity and variability. 

Finding string rewriting rules is quite 

straightforward. We can represent any pair of 

terms x and y as follows:  

 

x = LXR 

y = LYR 

where L is the left common substring shared by 

strings x and y, R is the right common substring, 

and X and Y are the substrings in the center that are 

not shared by the two strings. From this 

representation, we create the rule that replaces Y 

with X, which will transform y into x.  

According to the experimental results reported 

in Tsuruoka et al. (2007), normalization 

performance is the same as normalization rules 

hand-crafted by domain experts.  We generated 

1,000 normalization rules, using the gene/protein 

names gathered from existing databases as the 

dictionary for normalization rule generation. 

Terms mapped to more than 10 accession 

numbers are considered too ambiguous and filtered 

out from the new variant list.  As a result, 70,105 

variants of gene/protein names were extracted from 

15 million MEDLINE abstracts. 

6 Biomedical usages 

In the lexicon, terminological verbs are linked to 

verb subcategorization frames (SCFs) which were 

acquired through unsupervised automatic 

acquisition techniques from linguistically pre-

processed domain corpora. In the biomedical field, 

there is a strongly-felt desideratum that 

subcategorisation patterns should include strongly 

selected modifiers (such as location, manner and 

timing), as these are deemed to be essential for the 

correct interpretation of texts (Tsai et al., 2007). 

According to this, we adopted a “discovery” 

approach to SCF acquisition based on a looser 

notion of SCFs, which include typical verb 

modifiers in addition to strongly selected 

arguments.  

In order to meet this basic requirement, a deep 

level of syntactic annotation was selected as the 

starting point for SCF induction. For this purpose, 

we used the Enju syntactic parser for English 

(Miyao et al., 2003)
1
, characterised by a wide-

coverage probabilistic HPSG grammar and an 

efficient parsing algorithm, and whose output is 

returned in terms of predicate-argument relations. 

In particular, we used the Enju version adapted to 

biomedical texts (Hara et al., 2005).  

The SCF induction process was performed 

through the following steps:  
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1. syntactic annotation of the acquisition corpus 

with Enju (v2.2). The acquisition corpus 

included both MEDLINE abstracts and full 

papers containing a total of approximately 6 

million word tokens; 

2. for each verbal occurrence, extraction of the 

observed dependency sets (ODSs). Note that 

the order of the dependencies in each ODS is 

normalised and does not reflect their order of 

occurrence in context; 

3. induction of relevant SCF information 

associated with a given verb. 
 

For each observed dependency set, the 

conditional probability given the verb type v was 

computed: thresholding was used, to filter out 

noisy frames (i.e., frames containing not only 

arguments and strongly selected modifiers, but also 

adjuncts) as well as possible errors of either 

parsing or ODS extraction. An ODS with an 

associated probability score beyond a certain 

threshold is selected as eligible SCF for that verb 

type.  

Careful analysis of acquired SCFs revealed that 

many of the strongly selected modifiers were 

spread over different frames and that, even by 

lowering filtering thresholds, they either 

disappeared from the final output or their role was 

radically underestimated. We thus decided to 

complement acquired SCF information with 

information about individual dependencies of 

verbs. To detect typical verbal dependencies, 

corresponding to either arguments or strongly 

selected modifiers, we used the log likelihood 

score (henceforth ll (Dunning, 1993)). This is a 

logarithmic measure of the degree of correlation 

between v and each dependency type, gauged by 

comparing their joint probability with the 

probability of finding them together by chance, 

given their independent marginal distributions.  

Due to the observed complementarity between 

acquired SCF and individual dependency 

information and its potential usage in different text 

mining applications, we decided to include both 

information types in the lexicon. SCF and 

dependency information was acquired for 759 

orthographic variants of different terminological 

verbs, corresponding to 658 different base forms 

(see section 3.1). In particular, the lexicon includes 

1,410 verb-SCF associations, involving 97 

different SCF types, and 1,718 verb-dependency 

associations, involving 44 dependency types. For 

each SCF, the following information types are 

specified: its conditional probability given the verb, 

and the percentage of times it occurs with the verb 

in the passive voice. This latter information type is 

particularly useful to account for SCFs typically 

associated with the verb used in the passive voice: 

this is the case, for instance, of the verb find whose 

frame  ARG1#ARG2#TO-INF# is typically (i.e., 

89% of the time) associated with passive contexts 

(e.g., This was found to be interesting). Concerning 

individual dependencies, the lexicon includes 

information about its association with respect to 

the verb, expressed in terms of the ll score, and – 

again – the percentage of times it occurs with the 

verb in the passive voice. Tables 2 and 3 show 

examples of subcategorization information stored 

in the lexicon for the verb acquire. 
 

Table 2  Subcategorization frame examples 

 

v SCF p(SCF|v) % pass 

acquire ARG1#ARG2# 0.5461 0.1284 

acquire ARG1#ARG2#PP-in# 0.0886 0.0833 

acquire ARG1#ARG2#PP-from# 0.0406 0.1818 

acquire ARG1#ARG2#PP-by# 0.0406 0.0000 

acquire ARG1#ARG2#PP-during# 0.0295 0.3750 

 

Table 3  Subcategorization slot examples 

 

v DEP ll % pass 

acquire ARG2# 579.96392 0.1512915 

acquire WH-when# 25.703417 0.1 

acquire PP-from# 22.716082 0.3333333 

acquire PP-by# 13.626654 0 

acquire PP-in# 13.416025 0.1666667 

 

7. Comparison to existing lexicons 

Several existing large-scale dictionaries and 

lexicons accommodate biological terms.  Among 

them, many researchers use WordNet and the 

Specialist Lexicon for their text processing. 

WordNet is a general English resource which 

contains domain specific terms.  The Specialist 

Lexicon was created by the National Library of 

Medicine, targeting the biomedical domain in 

general.  

This section shows that our lexicon 

complements these popular lexical resources, by 

focusing on the words and relations that are 



covered by our lexicon but not by these existing 

ones. 

7.1 WordNet 

WordNet (Fellbaum, 1998) is a general English 

thesaurus which additionally covers biological 

terms.  We used WordNet 3.0
1
 to evaluate term 

coverage.   

Figure 2 shows the proportion of terminological 

words and relations (such as the word 

retroregulate and the relation retroregulate → 

retroregulation) in our lexicon that are also found 

in WordNet. 

Since WordNet is not targeted at the biology 

domain, many biological terms and derivational 

relations are not listed.   

7.2 UMLS Specialist Lexicon 

The Specialist Lexicon2 is a syntactic lexicon of 

biomedical and general English words, providing 

linguistic information about individual vocabulary 

items (Browne et al., 2003).  Whilst it contains a 

large number of biomedical terms, our lexicon is 

tailored to the biology domain and covers more 

terms used within the biology domain, especially 

the molecular biology domain, than the Specialist 

Lexicon. 

Figure 3 shows the proportion of words in our 

lexicon that are covered by the Specialist Lexicon. 

Because the Specialist Lexicon is a biomedical 

lexicon and the target is broader than our lexicon, 

some biology-oriented words and relations are 

missing.  For example the Specialist Lexicon 

includes the term retro-regulator but not retro-

regulate. This means that derivational relations of 

retro-regulate are not covered by the Specialist 

Lexicon. 

8. Conclusion and remarks 

This paper has presented the BioLexicon, a unique 

resource comprising rich linguistic information 

suitable for bio-text mining applications.  The 

lexicon has the following types of entries. 

 

(1) Terminologies 

(2) Derivational relations 
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(3) General English words 

(4) Verb subcategorization frames 
 

Comparisons with WordNet and the NLM 

Specialist Lexicon reveal that the BioLexicon 

covers words and relations which are pertinent to 

the biology domain but not included in these 

resources. We believe that it is a unique resource 

within the domain, which will play a 

complementary role to existing lexicons and 

thesauri. 

The BioLexicon is available for non-

commercial purposes under the Creative Commons 

license.  

Our future work includes incorporating 

semantic event frames, such as gene regulation 

event frames, in the lexicon.  Extrinsic evaluations 

of the lexicon in information extraction and 

question answering tasks are also planed. 
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Figure 3 Word and Relation Coverage (%) in the Specialist 

Lexicon 
Figure 2 Word and relation coverage (%)  in WordNet 


