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Abstract 

We present a data-driven variant of the LR 
algorithm for dependency parsing, and ex-
tend it with a best-first search for probabil-
istic generalized LR dependency parsing.  
Parser actions are determined by a classifi-
er, based on features that represent the cur-
rent state of the parser.  We apply this pars-
ing framework to both tracks of the CoNLL 
2007 shared task, in each case taking ad-
vantage of multiple models trained with 
different learners.  In the multilingual track, 
we train three LR models for each of the 
ten languages, and combine the analyses 
obtained with each individual model with a 
maximum spanning tree voting scheme.  In 
the domain adaptation track, we use two 
models to parse unlabeled data in the target 
domain to supplement the labeled out-of-
domain training set, in a scheme similar to 
one iteration of co-training. 

1 Introduction 

There are now several approaches for multilingual 
dependency parsing, as demonstrated in the 
CoNLL 2006 shared task (Buchholz and Marsi, 
2006).  The dependency parsing approach pre-
sented here extends the existing body of work 
mainly in four ways:  
1. Although stepwise1  dependency parsing has 

commonly been performed using parsing algo-

                                                
1 Stepwise parsing considers each step in a parsing algo-
rithm separately, while all-pairs parsing considers entire 

rithms designed specifically for this task, such 
as those described by Nivre (2003) and Yamada 
and Matsumoto (2003), we show that this can 
also be done using the well known LR parsing 
algorithm (Knuth, 1965), providing a connec-
tion between current research on shift-reduce 
dependency parsing and previous parsing work 
using LR and GLR models;  

2. We generalize the standard deterministic step-
wise framework to probabilistic parsing, with 
the use of a best-first search strategy similar to 
the one employed in constituent parsing by Rat-
naparkhi (1997) and later by Sagae and Lavie 
(2006);  

3. We provide additional evidence that the parser 
ensemble approach proposed by Sagae and La-
vie (2006a) can be used to improve parsing ac-
curacy, even when only a single parsing algo-
rithm is used, as long as variation can be ob-
tained, for example, by using different learning 
techniques or changing parsing direction from 
forward to backward (of course, even greater 
gains may be achieved when different algo-
rithms are used, although this is not pursued 
here); and, finally, 

4. We present a straightforward way to perform 
parser domain adaptation using unlabeled data 
in the target domain. 

 
We entered a system based on the approach de-

scribed in this paper in the CoNLL 2007 shared 

                                                                          
trees.  For a more complete definition, see the CoNLL-
X shared task description paper (Buchholz and Marsi, 
2006). 
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task (Nivre et al., 2007), which differed from the 
2006 edition by featuring two separate tracks, one 
in multilingual parsing, and a new track on domain 
adaptation for dependency parsers.  In the multi-
lingual parsing track, participants train dependency 
parsers using treebanks provided for ten languages: 
Arabic (Hajic et al., 2004), Basque (Aduriz et al. 
2003), Catalan (Martí et al., 2007), Chinese (Chen 
et al., 2003), Czech (Böhmova et al., 2003), Eng-
lish (Marcus et al., 1993; Johansson and Nugues, 
2007), Greek (Prokopidis et al., 2005), Hungarian 
(Czendes et al., 2005), Italian (Montemagni et al., 
2003), and Turkish (Oflazer et al.,  2003).  In the 
domain adaptation track, participants were pro-
vided with English training data from the Wall 
Street Journal portion of the Penn Treebank (Mar-
cus et al., 1993) converted to dependencies (Jo-
hansson and Nugues, 2007) to train parsers to be 
evaluated on material in the biological (develop-
ment set) and chemical (test set) domains (Kulick 
et al., 2004), and optionally on text from the 
CHILDES database (MacWhinney, 2000; Brown, 
1973). 

 Our system’s accuracy was the highest in the 
domain adaptation track (with labeled attachment 
score of 81.06%), and only 0.43% below the top 
scoring system in the multilingual parsing track 
(our average labeled attachment score over the ten 
languages was 79.89%).  We first describe our ap-
proach to multilingual dependency parsing, fol-
lowed by our approach for domain adaptation.  We 
then provide an analysis of the results obtained 
with our system, and discuss possible improve-
ments. 

2 A Probabilistic LR Approach for De-
pendency Parsing 

Our overall parsing approach uses a best-first 
probabilistic shift-reduce algorithm based on the 
LR algorithm (Knuth, 1965).  As such, it follows a 
bottom-up strategy, or bottom-up-trees, as defined 
in Buchholz and Marsi (2006), in contrast to the 
shift-reduce dependency parsing algorithm de-
scribed by Nivre (2003), which is a bottom-up/top-
down hybrid, or bottom-up-spans.  It is unclear 
whether the use of a bottom-up-trees algorithm has 
any advantage over the use of a bottom-up-spans 
algorithm (or vice-versa) in practice, but the avail-
ability of different algorithms that perform the 
same parsing task could be advantageous in parser 

ensembles.  The main difference between our pars-
er and a traditional LR parser is that we do not use 
an LR table derived from an explicit grammar to 
determine shift/reduce actions.  Instead, we use a 
classifier with features derived from much of the 
same information contained in an LR table: the top 
few items on the stack, and the next few items of 
lookahead in the remaining input string.  Addition-
ally, following Sagae and Lavie (2006), we extend 
the basic deterministic LR algorithm with a best-
first search, which results in a parsing strategy sim-
ilar to generalized LR parsing (Tomita, 1987; 
1990), except that we do not perform Tomita’s 
stack-merging operations.   

The resulting algorithm is projective, and non-
projectivity is handled by pseudo-projective trans-
formations as described in (Nivre and Nilsson, 
2005).  We use Nivre and Nilsson’s PATH 
scheme2. 

For clarity, we first describe the basic variant of 
the LR algorithm for dependency parsing, which is 
a deterministic stepwise algorithm.  We then show 
how we extend the deterministic parser into a best-
first probabilistic parser. 

2.1 Dependency Parsing with a Data-Driven 
Variant of the LR Algorithm 

The two main data structures in the algorithm are a 
stack S and a queue Q.  S holds subtrees of the fi-
nal dependency tree for an input sentence, and Q 
holds the words in an input sentence.  S is initia-
lized to be empty, and Q is initialized to hold every 
word in the input in order, so that the first word in 
the input is in the front of the queue.3 

The parser performs two main types of actions: 
shift and reduce.  When a shift action is taken, a 
word is shifted from the front of Q, and placed on 
the top of S (as a tree containing only one node, the 
word itself).  When a reduce action is taken, the 

                                                
2 The PATH scheme was chosen (even though Nivre and 
Nilsson report slightly better results with the HEAD 
scheme) because it does not result in a potentially qua-
dratic increase in the number of dependency label types, 
as observed with the HEAD and HEAD+PATH 
schemes.  Unfortunately, experiments comparing the 
use of the different pseudo-projectivity schemes were 
not performed due to time constraints. 
3 We append a “virtual root” word to the beginning of 
every sentence, which is used as the head of every word 
in the dependency structure that does not have a head in 
the sentence. 
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two top items in S (s1 and s2) are popped, and a 
new item is pushed onto S.  This new item is a tree 
formed by making the root s1 of a dependent of the 
root of s2, or the root of s2 a dependent of the root 
of s1.  Depending on which of these two cases oc-
cur, we call the action reduce-left or reduce-right, 
according to whether the head of the new tree is to 
the left or to the right its new dependent.  In addi-
tion to deciding the direction of a reduce action, 
the label of the newly formed dependency arc must 
also be decided.  

Parsing terminates successfully when Q is emp-
ty (all words in the input have been processed) and 
S contains only a single tree (the final dependency 
tree for the input sentence).  If Q is empty, S con-
tains two or more items, and no further reduce ac-
tions can be taken, parsing terminates and the input 
is rejected.  In such cases, the remaining items in S 
contain partial analyses for contiguous segments of 
the input. 

2.2 A Probabilistic LR Model for Dependen-
cy Parsing 

In the traditional LR algorithm, parser states are 
placed onto the stack, and an LR table is consulted 
to determine the next parser action.  In our case, 
the parser state is encoded as a set of features de-
rived from the contents of the stack S and queue Q, 
and the next parser action is determined according 
to that set of features.  In the deterministic case 
described above, the procedure used for determin-
ing parser actions (a classifier, in our case) returns 
a single action.  If, instead, this procedure returns a 
list of several possible actions with corresponding 
probabilities, we can then parse with a model simi-
lar to the probabilistic LR models described by 
Briscoe and Carroll (1993), where the probability 
of a parse tree is the product of the probabilities of 
each of the actions taken in its derivation. 

To find the most probable parse tree according 
to the probabilistic LR model, we use a best-first 
strategy.  This involves an extension of the deter-
ministic shift-reduce into a best-first shift-reduce 
algorithm.  To describe this extension, we first in-
troduce a new data structure Ti that represents a 
parser state, which includes a stack Si, a queue Qi, 
and a probability Pi.  The deterministic algorithm 
is a special case of the probabilistic algorithm 
where we have a single parser state T0 that contains 
S0 and Q0, and the probability of the parser state is 
1.  The best-first algorithm, on the other hand, 

keeps a heap H containing multiple parser states 
T0... Tm.  These states are ordered in the heap ac-
cording to their probabilities, which are determined 
by multiplying the probabilities of each of the 
parser actions that resulted in that parser state.  The 
heap H is initialized to contain a single parser state 
T0, which contains a stack S0, a queue Q0 and prob-
ability P0 = 1.0.  S0 and Q0 are initialized in the 
same way as S and Q in the deterministic algo-
rithm.  The best-first algorithm then loops while H 
is non-empty.  At each iteration, first a state Tcurrent 
is popped from the top of H.  If Tcurrent corresponds 
to a final state (Qcurrent is empty and Scurrent contains 
a single item), we return the single item in Scurrent 
as the dependency structure corresponding to the 
input sentence.  Otherwise, we get a list of parser 
actions act0...actn (with associated probabilities 
Pact0...Pactn) corresponding to state Tcurrent.  For 
each of these parser actions actj, we create a new 
parser state Tnew by applying actj to Tcurrent, and set 
the probability Tnew to be Pnew = Pcurrnet * Pactj.  
Then, Tnew is inserted into the heap H.  Once new 
states have been inserted onto H for each of the n 
parser actions, we move on to the next iteration of 
the algorithm. 

3 Multilingual Parsing Experiments 

For each of the ten languages for which training 
data was provided in the multilingual track of the 
CoNLL 2007 shared task, we trained three LR 
models as follows.  The first LR model for each 
language uses maximum entropy classification 
(Berger et al., 1996) to determine possible parser 
actions and their probabilities4.  To control overfit-
ting in the MaxEnt models, we used box-type in-
equality constraints (Kazama and Tsujii, 2003). 
The second LR model for each language also uses 
MaxEnt classification, but parsing is performed 
backwards, which is accomplished simply by re-
versing the input string before parsing starts.  Sa-
gae and Lavie (2006a) and Zeman and Žabokrtský 
(2005) have observed that reversing the direction 
of stepwise parsers can be beneficial in parser 
combinations. The third model uses support vector 
machines5  (Vapnik, 1995) using the polynomial 
                                                
4 Implementation by Yoshimasa Tsuruoka, available at 
http://www-tsujii.is.s.u-tokyo.ac.jp/~tsuruoka/maxent/ 
5 Implementation by Taku Kudo, available at 
http://chasen.org/~taku/software/TinySVM/ and all vs. 
all was used for multi-class classification. 
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kernel with degree 2. Probabilities were estimated 
for SVM outputs using the method described in 
(Platt, 1999), but accuracy improvements were not 
observed during development when these esti-
mated probabilities were used instead of simply the 
single best action given by the classifier (with 
probability 1.0), so in practice the SVM parsing 
models we used were deterministic. 

At test time, each input sentence is parsed using 
each of the three LR models, and the three result-
ing dependency structures are combined according 
to the maximum-spanning-tree parser combination 
scheme6 (Sagae and Lavie, 2006a) where each de-
pendency proposed by each of the models has the 
same weight (it is possible that one of the more 
sophisticated weighting schemes proposed by Sa-
gae and Lavie may be more effective, but these 
were not attempted).  The combined dependency 
tree is the final analysis for the input sentence. 

Although it is clear that fine-tuning could pro-
vide accuracy improvements for each of the mod-
els in each language, the same set of meta-
parameters and features were used for all of the ten 
languages, due to time constraints during system 
development.  The features used were7:  

 
• For the subtrees in S(1) and S(2) 

• the number of children of the root word of 
the subtrees; 

• the number of children of the root word of 
the subtree to the right of the root word; 

• the number of children of the root word of 
the subtree to the left of the root word; 

• the POS tag and DEPREL of the rightmost 
and leftmost children;  

• The POS tag of the word immediately to the 
right of the root word of S(2); 

• The POS tag of the word immediately to the 
left of S(1); 

                                                
6 Each dependency tree is deprojectivized before the 
combination occurs. 
7 S(n) denotes the nth item from the top of the stack 
(where S(1) is the item on top of the stack), and Q(n) 
denotes the nth item in the queue.  For a description of 
the features names in capital letters, see the shared task 
description (Nivre et al., 2007). 

• The previous parser action; 

• The features listed for the root words of the 
subtrees in table 1.   

In addition, the MaxEnt models also used selected 
combinations of these features.  The classes used 
to represent parser actions were designed to encode 
all aspects of an action (shift vs. reduce, right vs. 
left, and dependency label) simultaneously. 

Results for each of the ten languages are shown 
in table 2 as labeled and unlabeled attachment 
scores, along with the average labeled attachment 
score and highest labeled attachment score for all 
participants in the shared task.  Our results shown 
in boldface were among the top three scores for 
those particular languages (five out of the ten lan-
guages). 
 

 
 S(1) S(2) S(3) Q(0) Q(1) Q(3) 
WORD x x x x x  
LEMMA  x x  x   
POS x x x x x x 
CPOS x x  x   
FEATS x x  x   

Table 1: Additional features. 
 

 
 

Language LAS UAS Avg 
LAS 

Top 
LAS 

Arabic 74.71 84.04 68.34 76.52 
Basque 74.64 81.19 68.06 76.94 
Catalan 88.16 93.34 79.85 88.70 
Chinese 84.69 88.94 76.59 84.69 
Czech 74.83 81.27 70.12 80.19 
English 89.01 89.87 80.95 89.61 
Greek 73.58 80.37 70.22 76.31 
Hungarian 79.53 83.51 71.49 80.27 
Italian 83.91 87.68 78.06 84.40 
Turkish 75.91 82.72 70.06 79.81 
ALL  79.90 85.29 65.50 80.32 

Table 2: Multilingual results. 
 
 

4 Domain Adaptation Experiments 

In a similar way as we used multiple LR models in 
the multilingual track, in the domain adaptation 
track we first trained two LR models on the out-of-
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domain labeled training data.  The first was a for-
ward MaxEnt model, and the second was a back-
ward SVM model.  We used these two models to 
perform a procedure similar to a single iteration of 
co-training, except that selection of the newly (au-
tomatically) produced training instances was done 
by selecting sentences for which the two models 
produced identical analyses.  On the development 
data we verified that sentences for which there was 
perfect agreement between the two models had 
labeled attachment score just above 90 on average, 
even though each of the models had accuracy be-
tween 78 and 79 over the entire development set. 

Our approach was as follows:  
 

1. We trained the forward MaxEnt and backward 
SVM models using the out-of-domain labeled 
training data;  

2. We then used each of the models to parse the 
first two of the three sets of domain-specific 
unlabeled data that were provided (we did not 
use the larger third set) 

3. We compared the output for the two models, 
and selected only identical analyses that were 
produced by each of the two separate models;  

4. We added those analyses (about 200k words in 
the test domain) to the original (out-of-
domain) labeled training set;  

5. We retrained the forward MaxEnt model with 
the new larger training set; and finally  

6. We used this model to parse the test data. 

Following this procedure we obtained a labeled 
attachment score of 81.06, and unlabeled attach-
ment score of 83.42, both the highest scores for 
this track.  This was done without the use of any 
additional resources (closed track), but these re-
sults are also higher than the top score for the open 
track, where the use of certain additional resources 
was allowed.  See (Nivre et al., 2007). 

5 Analysis and Discussion 

One of the main assumptions in our use of differ-
ent models based on the same algorithm is that 
while the output generated by those models may 
often differ, agreement between the models is an 
indication of correctness.  In our domain adapta-
tion approach, this was clearly true.  In fact, the 

approach would not have worked if this assump-
tion was false.  Experiments on the development 
set were encouraging.  As stated before, when the 
parsers agreed, labeled attachment score was over 
90, even though the score of each model alone was 
lower than 79.  The domain-adapted parser had a 
score of 82.1, a significant improvement.  Interes-
tingly, the ensemble used in the multilingual track 
also produced good results on the development set 
for the domain adaptation data, without the use of 
the unlabeled data at all, with a score of 81.9 (al-
though the ensemble is more expensive to run). 

The different models used in each track were 
distinct in a few ways: (1) direction (forward or 
backward); (2) learner (MaxEnt or SVM); and (3) 
search strategy (best-first or deterministic).  Of 
those differences, the first one is particularly inter-
esting in single-stack shift-reduce models, as ours.  
In these models, the context to each side of a (po-
tential) dependency differs in a fundamental way.  
To one side, we have tokens that have already been 
processed and are already in subtrees, and to the 
other side we simply have a look-ahead of the re-
maining input sentence.  This way, the context of 
the same dependency in a forward parser may dif-
fer significantly from the context of the same de-
pendency in a backward parser.  Interestingly, the 
accuracy scores of the MaxEnt backward models 
were found to be generally just below the accuracy 
of their corresponding forward models when tested 
on development data, with two exceptions: Hunga-
rian and Turkish.  In Hungarian, the accuracy 
scores produced by the forward and backward 
MaxEnt LR models were not significantly differ-
ent, with both labeled attachment scores at about 
77.3 (the SVM model score was 76.1, and the final 
combination score on development data was 79.3).  
In Turkish, however, the backward score was sig-
nificantly higher than the forward score, 75.0 and 
72.3, respectively. The forward SVM score was 
73.1, and the combined score was 75.8.   In expe-
riments performed after the official submission of 
results, we evaluated a backward SVM model 
(which was trained after submission) on the same 
development set, and found it to be significantly 
more accurate than the forward model, with a score 
of 75.7.  Adding that score to the combination 
raised the combination score to 77.9 (a large im-
provement from 75.8).  The likely reason for this 
difference is that over 80% of the dependencies in 
the Turkish data set have the head to the right of 
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the dependent, while only less than 4% have the 
head to the left.  This means that the backward 
model builds much more partial structure in the 
stack as it consumes input tokens, while the for-
ward model must consume most tokens before it 
starts making attachments.  In other words, context 
in general in the backward model has more struc-
ture, and attachments are made while there are still 
look-ahead tokens, while the opposite is generally 
true in the forward model. 

6 Conclusion  

Our results demonstrate the effectiveness of even 
small ensembles of parsers that are relatively 
similar (using the same features and the same 
algorithm).  There are several possible extensions 
and improvements to the approach we have 
described.  For example, in section 3 we mention 
the use of different weighting schemes in 
dependency voting.  We list additional ideas that 
were not attempted due to time constraints, but that 
are likely to produce improved results. 

One of the simplest improvements to our ap-
proach is simply to train more models with no oth-
er changes to our set-up.  As mentioned in section 
5, the addition of a backward SVM model did im-
prove accuracy on the Turkish set significantly, 
and it is likely that improvements would also be 
obtained in other languages.  In addition, other 
learning approaches, such as memory-based lan-
guage processing (Daelemans and Van den Bosch, 
2005), could be used.  A drawback of adding more 
models that became obvious in our experiments 
was the increased cost of both training (for exam-
ple, the SVM parsers we used required significant-
ly longer to train than the MaxEnt parsers) and 
run-time (parsing with MBL models can be several 
times slower than with MaxEnt, or even SVM).  A 
similar idea that may be more effective, but re-
quires more effort, is to add parsers based on dif-
ferent approaches.  For example, using MSTParser 
(McDonald and Pereira, 2005), a large-margin all-
pairs parser, in our domain adaptation procedure 
results in significantly improved accuracy (83.2 
LAS).  Of course, the use of different approaches 
used by different groups in the CoNLL 2006 and 
2007 shared tasks represents great opportunity for 
parser ensembles. 
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