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Abstract

This paper presents a novel document classification method using
all substrings as features. Although tokenized words are not
enough for determining a class of a document, learning by using all
substrings has a prohibitive computational cost because the number
of all candidate substrings can be very large. We show that the idea
of equivalent classes of substrings can help determine all effective
substrings exhaustively in linear time. Moreover, by applying L
regularization to our model, we obtain a compact result, which
makes an inference extremely efficient in time and space, and robust
even if we use substrings of all lengths. In experiments, we show
that our method can extract effective substrings efficiently, and
achieved more accurate results and the its inference was faster than
the results using previous methods.

Keywords: Document Classification, Logistic Regression,
L, regularization, Enhanced Suffix Arrays

1 Introduction

Document classification is a fundamental task for many
applications; given a document, we assign a label such as
a category (sports, money), or polarity (positive or negative
opinion) according to the meaning of the document. Rule-
based methods were first applied in this task, but recently,
machine learning methods have been applied using support
vector machines (SVM) or logistic regressions (LLR) because
they are robust, easy to adapt to a new domain, and achieve
more accurate results.

Generally, a document d is represented as a feature
vector f(d) € R™ where each dimension corresponds
to the occurrence of a word in a document. Since this
representation ignores the order or the position of the words,
this representation is called a bag of words (BOW).

Although a BOW representation loses much of the doc-
ument information, this often achieves high performance be-
cause the occurrence of a few keywords can often determine
the label of the document.

However, this BOW representation still suffers from the
following three problems.

The first is the error in the conversion from a document
to a set of words. For example, several languages, such
as Japanese and Chinese, do not represent word boundary
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information explicitly. The word identification task itself is
not easy, and the result includes many errors. What is worse
is that the keywords for document classification are often
unknown words such as a person’s name, (e.g. Shaquille
O’Neal), and BOW representation loses this information due
to errors occurring in the analysis.

The second is that, in some data, it is difficult to define
what the word is, such as, log data and bio-informatics data.

The third is the most important problem. Words units
are often inappropriate for document classification, although
N-gram words are effective. For example an occurrence of
a movie title is effective for determining the label of the
document to be movie. , many movie titles consist of several
common words, which are lost in a BOW representation.
The spam mail detection task is another example; signature
and template information is important but this is not word
information.

In this paper, we propose a logistic regression model
with all substring features for a document classification. We
consider all substrings as features, and can assign different
weights to them. Although the number of substrings, and
the features are prohibitively large to optimize, we can
find the optimal classifier in liner time in the total length
of documents by summarizing substring information in the
equivalent classes.

This paper shows that we can find effective features ex-
haustively by checking the features corresponding to max-
imal substring only. The number of maximal substrings is
not quadratic but linear in the document length, and we can
therefore efficiently train the weight vector.

Moreover, since we apply L; regularization on weights,
we obtain a very compact model; the number of non-zero
weights is very few, the model is easy to interpret, and the
inference is extremely efficient in time and working space.
By combining Grafting algorithm [1], a weight vector can
be optimized in time proportional to the number of non-zero
weights

Many previous works studied to use all substrings in-
formation for a document classification task. Among them,
string kernels [2] is most popular, which defines a kernel for
two documents d;, and d» as follows,

(1.1) K(dy,dy) = ) res(dy)s(da),
sEX*

where Y is the alphabet set, and X* is the set of all substrings



on X, and r, is a weight parameter for s (which is not decided
by learning), and s(d) is the frequency of a substring s in a
document d.

By incorporating this string kernel into SVM learning,
we can classify a document according to all the substring
information in the document. Teo [3] shows that by using
suffix arrays and auxiliary data structures, we can calculate a
kernel value in in O(|d | + |d2|) time, and an inference for a
test document d can be done in O(|d|) time where |d| is the
length of a document.

However, string kernels require a large amount of work-
ing space not only at training time, but also at inference time.
As an example, it requires 19 times for an original training
examples. Therefore, such a method cannot be applied for a
large document set.

Moreover, kernel methods cannot control each weight
independently, and they can only control a weight for each
training examples. In general, very few features contribute
to the label decision, and a string kernel cannot capture these
features efficiently.

Also, string kernels tend to be affected by noise, so that
we may need to cut off a long substring. Therefore, it is very
difficult to consider all substrings in a string kernel.

Very recently, Ifrim et. al [4] proposed a logistic regres-
sion model with variable-length N-gram features (structured
logistic regression: SLR). In their model, different weights
can be assigned to each features. They showed that N-gram
information is important for document classification, and
more accurate than BOW representation. However, because
effective N-grams are searched greedily, important N-gram
phrases can be lost. Another problem is that Ifrim’s method
suffers from over-fitting due to the lack of regularization, and
difficult to decide when the search process stops at training.

In experiments, we compared our method with previous
methods and showed that our method achieved the highest
performance in terms accuracy and speed.

2 Preliminaries

2.1 L; Regularized Logistic Regression Model In this
paper, we consider a multi-class logistic regression model
(LR). For an input vector x € R™, and an output label y €
%, and k = |#|, we define a feature vector ¢(z,y) € R™.
Then, the probability for a label y given an input  is defined
as follows,

1
700 exp(w” ¢(z,y))

> exp(w” ¢(x,y")),

2.2)

plylz;w) =

Z(z)

where w € R™ is the weight vector. The most probable
label is the one that maximizes the margin,

(2.3) y* = argmax p(y|z; w) = argmax w’ $(z,y).
y y

The parameter w is estimated by maximum likelihood
estimation (MLE) using training examples {(z;,y;)} (i =
1,...,n),

(2.4) w* = argmax L(w)
(2.5) L(w) = Zlogp(yim;w)

However, this MLE tends to over-fit the training data when
the amount of training examples is insufficient for the num-
ber of parameters.

To avoid this problem, a regularization term r(w)
R™ +— R is added to the likelihood term shown in (2.5).
By applying L, regularization (which is also called Lasso
regularization), the weight vector is estimated as follows:

(2.6) whup =argmax L(w) - Clwl,

where |w|; = |wi| + |we| + ... 4+ |wn|, and C > 0
is the trade-off parameter between the likelihood term and
the regularization term; a small C' emphasizes the training
data, and a large C emphasizes the regularization. This
L, regularization corresponds to the maximum a posteriori
(MAP) estimation with the Laplace prior on w. We call this
estimation L;-LR.

It is known that the result of L, -L.R is a sparse parameter
vector, in which many of the parameters are exactly zero.
In other words, learning with L, regularization naturally
has an effect on the feature selection, which results in an
efficient and interpretable inference. For example, Gao
et. al [5] compared L;-LLR with other learning methods
including L, regularized L.R. Even though the performances
for these methods are almost identical, the number of non-
zero weights is approximately 1/10 of that of Lo.

To optimize (2.6), a gradient based optimization cannot
be used directly, since the objective function is not differen-
tiable where w; = 0. Therefore several specialized meth-
ods have been proposed for the L;-LR optimization. In this
study, we will use OWL-QN [6] where the orthant of pa-
rameter is fixed at the time of updating, which was recently
generalized in [7].

2.2 Grafting To maximize the training efficiency by em-
ploying the characteristics of L, regularization, we use graft-
ing [1]. Algorithm 1 shows the pseudo code for this algo-
rithm.

In the algorithm, we keep the current weight vector w
and active features H (features that have non-zero weights).
At the beginning, we initialize the parameters as w = 0, and
H={}.

Next, we let v be the gradient of the likelihood term with



Algorithm 1 The training of L;-LR using grafting

Input: Training data (z;,y;) (i = 1,...,n), Parameter C
H={},w=0
loop
v =5
k* = argmax |uvg|
k

OL(w)

(v is the gradient of log likelihood term)
if |v-| < C then
break
end if
H=HUEk*
Optimize w with regards to H
end loop
Output w and H

regard to parameters w;

Q1 v = LW
ow
28) = Y (I(y=uy) —pylw;w)) é(xi,y),

where I(a) is 1 if a is true and 0 otherwise. Let k* be the
feature such that |vy | is the largest. Then we add k* to H,
and optimize w with H only by using a solver for L;-LR
such as OWL-QN [6], in that wy, such that k ¢ are fixed to
be 0).

We continue this process repeatedly until |vg«| < C.
Then the obtained weight vector is identical to the optimal
weight vector wysap [1].

Consequently, the training time is almost proportional to
the number of active features if we can efficiently compute
arg maxy, |vg|, even if the number of features is very large

2.3 Data Structures In this section, we explain several
data structures, which are used to calculate substring infor-
mation efficiently.

Let T'[1, s] be an input text drawn from an alphabet set
¥ of length s. We assume that T is terminated by a special
character § (T[s] = $), which is lexicographically smaller
than all other characters, and appears nowhere else in 7.

Let S; = T[i,s]' i = 1,...,s) be a suffix of T. A
suffix tree is a powerful tool for many string processing; a
trie data structure consisting of all suffixes of 7', and a node
with only one child is removed [8]. The number of internal
nodes in a suffix tree for text T' is less than s — 1. However,
the working space is very large even if we manipulate the
implementation of the suffix trees (e.g. 20s bytes).

Enhanced suffix arrays (ESA) [9] support many string
operations as efficiently as suffix trees. ESA consists of

TWe denote T'[i, ] as the substring of T' from 4-th character to j-th
character

T=abracadabra$

i SA H B suffix Suffix Tree
1 1210 |a|$ 12

2 [11|1 |r |as 11

3 |8 |4 |d|abras ; f@ 08
4 |1 |1 |$ |abracadabra$ c ¢1
5 4 |1 |r |acadabra$ /a X 4

6 6 |0 |c |adabras 4) bra 6

7 9 |3 |a|bras \% 5 i 9

8 |2 |0 |a |bracadabra$ F 2

9 5 |0 |a|cadabra$ 2

10 |7 |0 |a |dabra$ ra\ 7/

11 [10|2 |b |ra$ 3 $<10

12 |3 |0 |b |racadabras c 13

Figure 1: The column SA, show the suffix array for T' =
abracadabra, the column H shows the height array, the
column B shows the Burrows-Wheeler’s transformed text,
and the column suffix shows the suffixes. On the right, the
suffix trees for 7' is shown.

suffix array, and the height array, and the working space of
both is 9s bytes in total. See [9] for more detail.

A suffix array [10, 11] of T' is a permutation of all suf-
fixes of input text 7" so that the suffixes are lexicographically
sorted. Formally, the suffix array of 7" is an array SA[1 ... s]
containing a permutation of the interval [1...s], such that
Tsapg < Tsafig), forall 1 <4 < s, where “<” between
strings is the lexicographical order. Figure 1 shows an exam-
ple of the suffix array for text T' = abracadabra$.

The suffix array can be built in O(s) time for an input
text of length s using O(slog s) bits of working space [12]0

The height array H[1,s] for T is defined as H[i] =
lep(Ts ari), Tsafiv1))> where lep(Tsapi, Tsafi+1)) is the
length of the longest common prefix between T’ 43 and
T's o[i+1]- Thatis, H contains the lengths of the longest com-
mon prefixes of the suffixes of 7" that are consecutive in lex-
icographic order.

3 Document Classification with All Substring

3.1 Maximal Substring We propose a novel document
classifier using all substrings as features. This can be
considered as a bag of N-grams with N = 1. .. co. Although
the number of features (substrings) are the quadratic of
the document length, we can find the optimal solution in
linear time of a length of a document by reducing equivalent
substrings.



Formally, we represent a document as a bag of all
substring representations where all substrings correspond to
each dimension a feature vector. We call this representation
all-BOW.

The cost of an all-BOW representation is prohibitive to
directly train the L;-LLR model. However, we show that ef-
fective substrings can be found exhaustively by enumerating
all maximal substring information. Note that this is not an
approximation, but an exact solution.

To achieve this solution, we summarize substrings into
classes. The substrings int the same class which have equiv-
alent statistical information. The same idea was proposed
in [13], which calculates term frequencies and document fre-
quencies for all substrings efficiently. In this paper, we ex-
tend and simplify this concept to find effective substrings ef-
ficiently. The differences will be discussed.

First, let us explain the idea of equivalent classes of
substrings by using suffix trees, which are not discussed in
the Yamamoto’s original paper [13]. Recall that a suffix tree
for T store all suffixes of 7" in a trie data structure (Fig. 1).
Let occ(T, ) be the number of occurrences of a substring g
inT, and Pr 4[1,...,0cc(T, q)] be the list of all occurrence
positions of ¢ in T". We omit T if there is no confusion. For
example P, = {1,4,6,8,11} in Figure 1. Then, P, can be
examined by traversing the suffix tree from the root to the
edge along the edge characters. Note that suffix trees stores
all suffix of T' and any substring occurred in T" correspond to
some position in a suffix tree.

Let we call t(q) be the position of a node g in the suffix
tree. Then, all descendant leaves from ¢(g) denotes the
occurrence positions of ¢g. For example, in figure 1, when
q = ab, t(q) is at the edge between the internal node 1 and
the internal node 0. Therefore, P, = {8, 1}. Similarly “abr”
and “abra”, are again at the edge between 1 and 0 and, they
also occur at {8, 1}. From this observation, it is easy to show
that when two substrings ¢; and ¢, are on the same edge of
the suffix trees, the occurrence positions for ¢, and ¢ are
the same.

Let ¢; and ¢, be in the same class if ¢(q;) and ¢(g2) are
on the same edge.

The number of edges between internal nodes is at most
s — 1, and between an internal node and an leaf is s, where s
is the length of an input text. Hence, the number of different
classes is at most s — 1 + s = 2s — 1. Since all substrings
appearing in 7" at least once are mapped into some position
in the suffix tree for 7', we can factorize all substring into
2s — 1 classes.

We can easily extend this idea into a set of documents.
Given a document set (z;,y;) (¢ = 1,...,n), let T be the
concatenated test of documents, z;$122%>...2,$, where $;
are special characters that do not appear in the original text.
Let s be the length of T'. We then build a suffix trees for 7T'.
All the issue discussed above also hold.

Let tf(q,z) be the term frequency, or the number of
occurrence substring ¢ in a document z, and df(g) bet
the document frequency, or the number of documents that
include z. Then we summarize the idea of equivalent classes
of substrings as follows [13].

LEMMA 3.1. If two substrings q, and q» are in the same
class, then tf(q1,x;) = tf(qa,z;) forall 1 < i < n, and
df(q1) = df(q2). All substrings belong to one class, and
the number of different classes is at most 2s — 1

Proof. Let q; and ¢, be in the same class. Then the oc-
currence positions of them in 7' are all same. Since doc-
uments are delimited by special characters, the occurrence
of ¢; (1 = 1,2) does not overlap the document boundaries.
Therefore, the number of occurrence in a document, is al-
ways same.

We can further summarize the substring information
by considering a left expansion, which was not discussed
in [13]. We again see in the example in Figure 1, that the
occurrence positions of bra are {7,1}, which seem to be
different from abra whose positions are {8,2}. However,
these positions are the same with the constant move (8 =
T+1,2=7+1).

Figure 2 shows some examples for T' = abracadabra$.
The occurrence positions of “ab”, “abr”, “b”, “br”, “bra”,
“ra”, “abra” appears in the same positions with constant
move, and all these substrings are substrings of “abra”. An-
other class that appears more than once is only for “a’.
All other substrings appears once, and their longest max-
imal substring are suffixes, such as “abracadabra$”, and
“bracadabra”.

Therefore, if we find the longest substring in the class, it
can enumerate all substring in the same class efficiently. We
call such a substring maximal substring.

Formally, we define the maximal strings as follows.
Given input T" and substring ¢, let occe(T', ¢) be the number
of occurrences of ¢ in T', and Pr4[1,...,0cc(T,q)] be the
list of all occurrence positions of ¢ in T'. We omit T as
P,[1,...,0cc(q)] if there is no confusion. We first define
P-relation (=p) with substrings.

DEFINITION 3.1. Given two substring q; and gz, ¢1 <p 2
if and only if (1) q1 is a substring of q= (2) occ(q1) =
occ(qz), (3) there exists ¢ € N such that Py, [i] + ¢ = P, [i]
foralll <i < oce(q).

For example, in T' = abracadabral ab <p abrd and
bra <p abra, but a and ab are not in this relation.

The relation <p satisfies the transitivity: if g1 <p @2
and g2 <p g3, then g1 <p g3. Therefore, by <, relation, all
substrings in T are divided into several groups.

We finally, define the maximal substring,



abraradabra
abracradabra
abracadabra
abragcadabra
abracadabra
abracadabra

[abrakatabrd

abracadabra
abracadabra
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Figure 2: The substrings and its classes for a text “T" =
abracadabra$”. The suffix tree for T is shown in the left
of the figure, and all substring appeared in 7" is shown in the
right. The substrings in the same color belong to the same
class, and the longest one (the most above one in the class), is
the maximal substring. In this example, maximal substrings

are “a”, “abra”, and all suffixes of T'.

DEFINITION 3.2. The maximal substring p is a substring
such that there is no q such that p <p q.

We can easily prove that there is exactly one maximal
substring in each equivalent class.

This <p relation satisfies all properties in the lemma
3.1, but the number of classes are much smaller than the
original number of equivalent classes.

These maximal substring can be enumerated efficiently
by using enhanced suffix arrays (ESA) (Sec. 4).

First, all maximal substrings corresponds to internal
nodes or leaves in suffix trees. Especially a maximal sub-
string that occurs more than once correspond to internal
nodes only.

An internal node and leaves can be expressed as a pair of
index [I, 7], thus indicating that the corresponding substring
appearsin T'[p,p +d]inp € SA[l,...,r].

The enumeration of all leaves, and internal nodes can be
done in linear time of a document length [14]. The working
space for this enumeration is 10|T"| + O(n)bits if a pointer is
represented in 4 bytes (|T| < 232) .

However, not all internal nodes correspond to a maximal

substring. For example, in Figure 1, although the substring
ra corresponds to the internal node, it is not maximal one
because abra is the maximal substring.

To filter out these redundant internal nodes, we use an
array B[1,...,s], defined as B[i] = T[SA[i] — 1], except
when A[i] = 1, then B[i] = T'[s] = $. This array is known
as Burrows Wheeler Transform [15].

The following lemma holds,

LEMMA 3.2. The sufficient and necessarily condition of a
substring ¢ = [l,r,d] being a maximal substring is that a
q corresponds to a internal node or a leaf, and B][l,r] has
more than one character type.

We can check weather B[/, r] has more than one char-
acter type in constant time using n + o(n) bits of working
space (Appendix 7).

The pseudo code of this algorithm is show in the algo-
rithm 2. Therefore, we can obtain all maximal substrings in
linear time in the total length of documents.

3.2 Training with the Maximal Substring In this sec-
tion, we show that optimal weights for substrings can be de-
termined by considering the maximal substrings only.

First, we assume that the feature types is tf (term
frequency) but this is not the only case. The feature values
for substrings x and y are such that z <p y is always the
same for all documents.

In the L; regularization, if features have equal values
in all training examples, then the set of optimal weights
for these features belong to the simplex distributions. Let
fi, f2, .- ., fr be a feature set that has the same values in all
examples. We set these features belonging to the same class.
Note that this class is more general than that in the substring
discussed in 3.1.

LEMMA 3.3. Inthe L, regularization, let E = {f;} be a set
of feature indexes that belongs to the same class, and w* be
the weight vector that maximize (2.6). Then a weight vector
w' such that ), pwi = Y. pwy, and wiw; > 0 for all
i € E, and w} = w} foralli ¢ E also maximize (2.6).

Proof. From the definition, we have,

D lwh D )

i¢E i€E

Do lwil+ Y fwil.

i¢E i€E

lw'l, =

(3.9)

And, since w'T¢(z;,y) = w* (z;,y) forall 1 < i < n
and y € %, for the likelihood term, L(w') = L(w* holds.

Therefore, when there are feature sets belong to the
equivalent class, it is adequate to keep the sum of the weights
for these weights. In summary, for training we deal with



the features that correspond to maximal substrings. And
the obtained weight correspond to the sum of weights in the
equivalent class

4 Learning L, -LR using maximal substrings

We can generate a feature vector corresponding maximal
substrings only. However, its computational cost is still
large; the number of maximal substrings are linear in the
total length of documents. In this section, we show that how
to deal with these maximal substrings without generating
feature vectors explicitly.

Recall that, the grafting algorithm (Algorithm 1) only
requires finding a feature such that the absolute value of
the gradient of the likelifood is the maximum (k* =
arg maxy, vr). We show that we can estimate k* efficiently
by using auxiliary data structures.

In this paper, we consider the following feature types,
but our method is not limited to these feature types only.

e tf(q,d) : the frequency of ¢ in a document d.
e bin(q,d) : 1if q appears in d and 0 otherwise.

e idf(q) log(n/df(q)) where n is the number of
documents, and df(g) is the number of documents that
include q.

e len(q) : the length of q.

In generally, we can efficiently compute the gradient value if
feature functions depends on the position information. If the
feature function depends on the different information, such
as orthographic feature, then we cannot summarize substring
information, and we require different techniques for efficient
computation.

Let us consider the calculation of the gradient value
g(l,r,y) for the substring ¢ that appears in ¢ = T'[p, p + d]
in p € SA[l,r] with label y. Remember that any substrings
in T are store in the consecutive region in SA.

Let D[i] be a document index that includes SA[i]. Let
afl, k][1, s] be the two dimensional array defined as,

i—1

@.10) afyllil = (I(ypy) = v) — Plylepyy;w)) -

j=1
Then we can calculate g(I, r,y) as

(4.11) g(l,r,y) = afy][r] — ay][l].

This is because,

alyl[r] — afy][l]
= Y (Iypy) =v) — Plylepyy;w))
=t
= Z (I(ypy) = v) — P(ylzpy); w)) tf(g, z:).

i=1

Therefore, the gradient for any substring can be calcu-
lated in constant time by using table lookup, where table size
is O(s) bits.

For feature types idf(d) and bin(g, d), we can compute
the gradient of any substrings in constant time using auxil-
iary data structures [16]. In this case, we need to remove
duplicated documents at the enumarating the occurence of
g in [, 7]. In practice, the auxiliary data structures requires
much working space, so we adapt a simpler strategy; first
enumerate all positions including ¢, and then remove dupli-
cated documents in the positions.

When we use len(q) features, the gradient values for
substrings in the same class is different. In this case we
enumerate substring from the longest ones in the class

In summary, we state the following theorem;

THEOREM 4.1. Given training documents whose total
length is s, we can train a Ly regularized logistic regres-
sion model using all substring features in O(s) time using
O(slog s) bits of space.

The algorithm 2 shows the overall framework to com-
pute the arg max k. This is same as the bottom-up traversing
of all nodes in suffix tree using the height array [14] except
that we compute the gradient value of each features by using
grad(l,r,d) as discussed above.

4.1 Extension of Substring Finally, let us consider the
case when we can use external information such as the
word/phrase boundaries.

We replace an input 7" with an input 7" such that the
special characters # is inserted at the boundaries of words,
and then we apply the algorithm as above. Then, we only
deal with the maximal substring with # being the first
characters.

This conversion does not increase the computational
cost since the new input size is at most 2 times the original
input size and the number of maximal strings is much
smaller.

5 Inference

We explain how to classify a test document by using the
result of our algorithm.

After the training, we have a set of substrings H, and
their weights. We first build a trie data structure for H and
we assign a weight at each leaf or internal node. Then,
we find all matching for H by using the Aho-Corasick
method [17]. This is done in linear time in a length of a
test document .

Note that, unlike string kernels in which we have to keep
all of the document set, we only keep a few substrings due
to L; regularization. Therefore the working space is very
small.



Algorithm 2 The calculation of gradients of all maximal
substring
Inputd HJO, s], SA[O, s], B[O, s], DI0, s]
S A stack storing (pos: the beginning position in SA, len:
the length of substring )
vg = 0: Store the maximal substring that have the largest
gradient value
fori =0ton+ 1do
cur = (i, L[i])
cand = top(S)
while cand.len > cur.len do
if B[cand.pos,...,i] have more than 2 characters
then
vy = grad(cand.pos, i, cand.len)
// Estimate a gradient value of feature . See section
4.
if v, > vy then
vf = vy // Also stores k
end if
end if
end while
if cand.len < cur.len then
push(S, v) // Internal node
end if
push(S,(i, n-SA[i] + 1)) // Leaf
end for
output vy.

6 Experiments

We conducted a series of document classification experi-
ments for two data sets MOVIE and Tech-TC300.

MOVIE is a sentiment classification task, given a review
information we classify it into positive or negative ones.
There are two types of data set, the one provided by Bo Pang
2 (MOVIE-A), and the other provided by Ifrim? (MOVIE-
B) which was used in [4]. TechTC-300 consists of 300
binary classification task. An original category comes from
Open Directory Project. Among 300 tasks, we used two
tasks for which where SVM classification achieve only 70%
accuracies. 4[]

The details of each data set are described in Table 1.

We examined the performance using 5 cross validations.
We determined the hyper parameters by using the develop-
ment set.

We compared our method (Proposed in Table 2) with
L1-LR with BOW (BOW+L;), LR with variable length N-

thtp://www.cs.cornell.edu/People/pabo/movie—review—data/,

dataset v2.0

3http://www.mpi-inf.mpg.de/ ifrim/data/kdd08-datasets.zip, KDDO08-
datasets

4http://techtc.cs.technion.ac.il/techtc300/techtc300.html, A:
14271, B: 10539-194915
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gram [4] (SLR), and BOW with SVM (SVM). We used
a polynomial kernel because it achieved highest accuracy
compared other kernels (including string kernels).

For feature types, we compared the result using bin, tf,
idf, len and all these combinations. For word-based BOW,
tf achieved the best performance, and for the proposed
method, idf achieved the best performance®. We used these
feature types in the following experiments.

In practice, the most time consuming part in our method
was the calculation of arg maxy v, because we need to ac-
cess whole data sequentially. In an original grafting algo-
rithm, only one feature is added from the feature candidates.
We instead chose pre-defined number of largest features and
added these into H. Note that even if we include these fea-
tures toghater, it converges to the global optimum.

All experiments were conducted on a 3.0 GHz Xeon
processor with 32GB main memory. The operation system
was the Linux version 2.6.9. The compiler was g++ (gcc
version 4.0.3) executed with the -O3 option.

Table 2 shows the accuracy results. The proposed
method achieved the highest or the second-highest accuracy
in all data sets. SVM achieved the highest performance in the
MOVIE-a corpus, but very low performance in other corpora
because SVM was suffered from noise words. The methods
with L, regularization could filter out ineffective substrings,
and achieved high performance in TC300B. The results for
SLR were always equal to or worse than our method, because
SLR searches effective-substrings in a greedy manner, and
in some cases, they cannot find the effective substring.
Our proposed method could successfully find the effective
substrings from all substrings.

Finally we examined the scalability of the proposed
method. We changed the length of an input text, and
examined the time to enumerate all maximal substrings.
Note that this part is the most time-consuming, and dominant
part in our algorithm. Figure 3 shows the results.

This result indicate that our method can process in the
proportional to the text size even if the text is very large such
as 1 GB.

7 Conclusion

We proposed a novel classifier with all substrings as features
and showed that we can train the document classification
model with all substrings without approximation in the liner
time at training.

The experimental results showed that our method
achieves the highest performance in several tasks compared
to other document classification methods; word-based BOW,
and very recent variable-length N-gram logistic regression
model [4]. Our training results are represented as a very

S5There are no significant difference between idf, len, tf-idf, idf-len, tf-len

and tf-idf-len



Table 1: Detail of the data set

CORPUS NuM. pocs TOTAL LEN. NUM. TYPE OF WORDS NUM. MAXIMAL STRING
(BYTE)
MOVIE-A 2000 7786004 38187 1685037
MOVE-B 7440 213970 55764 713229
TC300-A 200 1953894 16655 378673
TC300-B 200 1424566 14430 236220
Table 2: Result of the document classification task
CORPUS PROPOSED BOW+L; SLR SVM
MOVIE-A 86.5% 83.0% 81.6% 87.2%
MOVIE-B 75.1% 71.0% 74.0% 69.1%
TC300A 80.0% 66.7% 80.0% 73.1%
TC300B 86.7% 86.7% 73.3% 71.9%
1000 72 [5] J. Gao, G. Andrew, M. Johnson, and K. Toutanova. A com-
parative study of parameter estimation methods for statistical
natural language processing. In Proc. of ACL, pages 824-831,
100 135 2007.
] 63 [6] G. Andrew and J. Gao. Scalable training of 11-regularized
(TSTE) log-linear models. In Proc. of ICML, 2007.
10 . [7] J. Yu, S. V. N. Vishwanathan, S. Guenter, and N. Schraudolph.
- A quasi-Newton approach to nonsmooth convex optimization.
In Proc. of ICML, 2008.
[8] D. Gusfield. Algorithms on Strings, Trees and Sequences.
! M ' Cambridge University Press, 1997.
. 10 ) 100 1000 [9] M. L. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing
Input Size (MB)

Figure 3: The time for finding all maximal substrings. The
x-axis shows the input size, and the y-axis shows the time for
reporting all maximal substrings.

compact set of substrings, and the inference time is very fast
in theory and practice.

As a next step, we will consider an application of our
method to unsupervised learning, such as clustering. We
will also extend our method to find effective combination of
substring information
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A Rank Dictionary

Let R[1,...,s — 1] be a bit vector such that R[;] = 1 if B[i] =
B[i + 1] and R[i] = 0 otherwise. Then, the BJ[l,r] consists of
only one character type if and only if R[l,r — 1] contains only
0s. This can be checked in constant time using n + o(n) bits
as follows. Given a bit array R[1,...,n], R[i] € {0,1}, we
can check whether R[l, r] contains 1 or not in constant time using
n + o(n) bits using rank dictionaries as follows. We assume a
RAM-model in which all logn sized operations can be done in
constant time. Rank dictionaries supports rank(R, ¢, p) that return
the number of ¢ € {0,1} in R[1,...,p]. Itis easy to check by
rank(R,1,r) — rank(R,1,1) > 0.

First, we conceptually divide an array R into large blocks of
I = log? bits, and again divide each large block into small blocks
of s = log™ /2 bits. We keep the results for rank(B, 1,7 x [)
in L[n/l] and the number of 1’s from the beginning of the large
block to each small block in S[n/s]. We also calculate all results
for the array of log™ /2 bits in table using 2t log™ /2} = /(n)
bits of space. Then rank(R,1,i) = L[|¢/l]] + S[|i/s]] +
popcount (R, |i/s], i) where popcount(B,1i,j) returns the num-
ber of 1’s in B[4, j] in constant time by table lookup. The size of an
auxiliary data is log nn/ log® n + loglog n/(log™ /2) + /(n) =
o(n)



