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Abstract  

Biomedical literature contains rich information about events of biological relevance.  Event corpora, containing classified, structured 

representations of important facts and findings contained within text, provide an important resource for the training of domain-specific 

information extraction (IE) systems. Such corpora pay little attention to the interpretation of events, e.g., whether an event describes a 

fact or an analysis of results, whether there is any speculation surrounding the event, etc. These types of information are collectively 

referred to as meta-knowledge. As previous work, an annotation scheme to enrich event corpora with meta-knowledge was designed to 

facilitate the training of more sophisticated IE systems, and was applied to the complete GENIA Event corpus of biomedical abstracts. 

In this paper, we describe a case study in which four full papers annotated with GENIA events have been manually enriched with 

meta-knowledge annotation. We analyse the annotation results, and compare them with the previously annotated abstracts. 
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1. Introduction 

Due to the rapid growth in the body of scientific literature, 

it is becoming increasingly important to move beyond 

simple keyword-based searching to more sophisticated 

methods that can help researchers to isolate information 

of interest from a potential mountain of relevant 

documents. Accordingly, text mining has been receiving 

increasing interest within the biomedical field 

(Zweigenbaum et al., 2007). In particular, information 

extraction (IE) systems produce structured, template-like 

representations of important facts and findings within 

documents, called events. The extracted events can form 

the basis of sophisticated semantic search systems, in 

which users specify search criteria through the (partial) 

completion of a structured template, which is matched 

against the extracted events.  

IE systems are sensitive to the features of the text on 

which they operate, and relevant event types vary 

between domains. Accordingly, such systems must be 

adapted to deal with specific domains. The usual method 

of adaptation is the application of machine-learning 

methods to annotated corpora, e.g. (Soderland, 1999; 

Califf  &  Mooney, 2003).  In the biomedical field, 

several corpora annotated with events have been 

produced, most notably the GENIA event corpus (Kim et 

al., 2008), the BioInfer corpus (Pyysalo et al., 2007) and 

the GREC corpus (Thompson et al., 2009). Research into 

event extraction systems was greatly boosted by the 

BioNLP’09 shared task on event extraction, in which 24 

teams participated (Kim et al., 2009).  

Until recently, most event corpora, and thus the systems 

trained on them, dealt exclusively with abstracts from 

small subdomains of molecular biology. However, the 

development of systems that automatically analyse full 

papers is also vital, given that less than the 8% of 

scientific claims occur in abstracts (Blake, 2010). 

However, since there are significant structural and 

linguistic differences between full papers and abstracts 

(Cohen et al., 2010), adapting text mining technology 

from abstracts to full papers presents significant 

challenges.  In terms of event extraction, an effort to 

move beyond the previous constraints is described in 

Pyysalo et al. (2010), which concerned the extraction of 

events from full papers in a new domain, i.e. infectious 

diseases. This theme was continued in the BioNLP 

Shared Task 2011 (Kim et al., 2011a), which included 

tasks relating to four different domains. The original 

corpus from the BioNLP’09 shared task (derived from 

the GENIA event corpus) was extended with a small 

number of full papers annotated according to the same 

event scheme, to allow evaluation of event extraction 

technology on full papers (Kim et al., 2011b). 

The focus of the annotation in most event corpora is on 

locating appropriate events in texts, assigning types to 

them and identifying event participants. However, 

detailed information about how the events are to be 

interpreted according to their textual context is usually 

missing from the annotations. Such information is termed 

as “meta-knowledge” (Nawaz et al., 2010). Very basic 

meta-knowledge information is included in most existing 

corpora, e.g., negated events are identified in BioInfer 

corpus, whilst negation and basic speculation information 

are present in the GENIA corpus and the two related 

corpora from the two BioNLP shared tasks. Such basic 

meta-knowledge is, however, not sufficient to distinguish 

between events that express the following types of 

meta-knowledge: 

• Accepted facts vs. experimental findings. 

• Hypotheses vs. interpretations of experimental 

results. 

• Previously reported findings vs. new findings. 

Previously, an annotation scheme tailored enriching 

biomedical event corpora with detailed meta-knowledge 

along five different dimensions was defined (Nawaz et al., 



2010). A slightly modified version of the 

meta-knowledge scheme was subsequently applied to the 

GENIA Event corpus (1000 MEDLINE abstracts, 

containing 36,858 events) (Thompson et al., 2011).  

In line with the extension of event extraction systems to 

deal with full papers, it is important to ensure that 

meta-knowledge can also be assigned to events in full 

texts. As a first step, we have performed a case study in 

which we have applied our meta-knowledge scheme to 4 

event-annotated full papers.  In this paper, we analyse the 

outcomes of this new meta-knowledge annotation effort, 

and compare the results to those obtained for abstracts in 

the GENIA event corpus. It is our intention that insights 

gained will help to feed into the design of systems that 

can automatically assign meta-knowledge at the level of 

full papers as well as abstracts. 

2. Event-Based Text Mining 

The process of event annotation normally consists of the 
identification of an event trigger and event participants, 
and the assignment of types/categories to each of these.  
The event-trigger is a word or phrase in the sentence that 
indicates the occurrence of the event (often a verb or 
nominalisation). The event-type (generally assigned from 
an ontology) categorises the type of information 
expressed by the event. The event participants, i.e., 
entities or other events that contribute towards the 
description of the event, are often categorised using 
semantic role labels such as cause and theme. Usually, 
semantic types (e.g. gene, protein, etc.) are also assigned 
to the named entities (NEs) participating in the event.  
In order to illustrate this typical event representation, 
consider the following sentence from GENIA Event 
corpus (PMID: 3035558): 

The results suggest that the narL gene product 

activates the nitrate reductase operon.  

Figure 1 shows the typical structured representation of 
the biomedical event described in this sentence. 

Figure 1: Typical representation of a bio-event 

The automatic recognition of such events allows users to 
create structured queries, on which different kinds of 
restrictions can be specified to restrict the types of events 
to be retrieved (Miyao et al., 2006). These restrictions 
may concern the type of event to be retrieved, the types of 
participants that should be present in the event or the 
values of these participants, in terms of either specific 
strings or NE types.  

3. Meta-Knowledge Annotation Scheme 

Our event-based meta-knowledge scheme aims to capture 

as much useful information as possible about individual 

events from their textual context, to support the training 

of enhanced event-based search systems. Such enhanced 

systems could improve the efficiency of tasks such as 

building and updating models of biological processes, 

e.g., pathways (Oda et al., 2008) and curation of 

biological databases (Ashburner et al., 2000; Yeh et al., 

2003). Central to both of these tasks is the identification 

of new knowledge, i.e. experimental findings or 

conclusions that relate to the current study, and which are 

stated with a high degree of confidence. Meta-knowledge 

identification is also useful when checking for 

inconsistencies or contradictions in the literature, since 

the meta-knowledge values assigned to two otherwise 

identical events can affect their interpretation in both 

subtle and significant ways.  

The scheme consists of multiple annotation dimensions 

to capture different aspects of meta-knowledge. For each 

dimension, a single category is assigned from a fixed set 

of possible values. If the category of a given dimension is 

assigned based on the presence of a particular word or 

phrase in the sentence, this is also annotated as a “clue”. 

The scheme was inspired by previous multi-dimensional 

efforts to assign meta-knowledge to continuous text 

spans, e.g. (Wilbur et al., 2006; Liakata et al., 2010). The 

feasibility of automating annotation according to both of 

these schemes has subsequently been demonstrated 

(Shatkay et al., 2008; Liakata et al., 2012). 

In contrast to the two schemes mentioned above, which 

concern the annotation of continuous text spans, our 

meta-knowledge annotation scheme (Thompson et al, 

2011) is the first that is specifically tailored to the 

enrichment of event annotations. In addition to allowing 

several distinct types of information to be encoded about 

events, the multi-dimensional nature of the scheme 

allows the interplay between the different dimension 

values to be used to derive further useful information 

(hyper-dimensions) regarding the interpretation of the 

event. The scheme is summarized in Figure 2. A brief 

overview of the dimensions of our scheme and their 

possible values are provided below. Each dimension has a 

default value that is assigned if the event’s textual context 

does not provide evidence for the assignment of one of 

the other values. 

Knowledge Type (KT): Captures the general 

information content of the event. Each event is classified 

as one of the following: Investigation (enquiries and 

examinations), Observation (direct experimental 

observations), Analysis (inferences, interpretations and 

conjectures), Method (experimental methods) Fact 

(general facts and well-established knowledge) or Other 

(default: events expressing incomplete information, or 

whose KT is unclear from the context) 

Certainty Level (CL): Encodes the confidence or 

certainty level ascribed to the event in the given text. We 

partition the epistemic scale into three distinct levels: L3 

(default: no expression of uncertainty), L2 (high 

confidence or slight speculation) and L1 (low confidence 

or considerable speculation). 

Polarity: Identifies negated events. We define negation 

as the absence or non-existence of an entity or a process. 

Possible values are Positive (default) and Negative.  

TRIGGER:  activates 

TYPE:      positive_regulation 

THEME:    nitrate reductase operon: operon 

CAUSE:     narL gene product: protein 

 



Manner: Captures information about the rate, level, 

strength or intensity of the event, using three values: High 

(the event occurs at a high rate or level of intensity), Low 

(the event occurs at a low rate or level of intensity) or 

Neutral (default: no indication of rate/intensity). 

Source:  Encodes the source of the knowledge being 

expressed by the event as Current (default: the current 

study) or Other (any other source). 

Hyper-Dimensions: Correspond to additional 

information that can be interfered by considering 

combinations of some of the explicitly annotated 

dimensions. We have identified two such 

hyper-dimensions each with binary values (Yes or No): 

New Knowledge (inferred from KT, Source and CL) and 

Hypothesis (inferred from KT and CL).  

Figure 2: Meta-knowledge annotation scheme 

The annotation of the GENIA Event corpus according to 

this scheme (Thompson et al., 2011) showed that high 

levels of inter-annotator agreement (between 0.843 and 

0.929 Kappa) were achieved by following the 66-page 

guidelines. Also, given that each of the two annotators 

had a different background (biology vs. linguistics), it 

was concluded that specific expertise does not appear 

necessary to perform meta-knowledge annotation. 

In the context of the current case study, it was important 

to consider whether the meta-knowledge scheme needed 

to be altered prior to its application to full papers. This 

consideration is relevant, firstly due to the fact that the 

scheme was defined only on the basis of examining 

abstracts, and secondly since previous research into 

meta-knowledge classification at the sentence or zone 

level has defined different numbers and types of 

categories to encode the general information content of 

the sentence/zone, according to whether abstracts (e.g. 

(McKnight  &  Srinivasan, 2003; Ruch et al., 2007; 

Hirohata et al., 2008)) or full papers (e.g. (Mizuta et al., 

2006; Liakata et al., 2010)) are under consideration. For 

full papers, the number of categories defined can be more 

than double the number used for abstracts. 

The information encoded by the KT dimension of the 

event-based meta-knowledge scheme is somewhat 

comparable to the above schemes. However, while 

sentence-based categories are quite strongly tied to 

structural aspects of the article, with labels such as 

background, experiment, conclusion, etc., the values of 

the KT dimension can be considered more abstract or 

high level. For example, if several different events occur 

in background and conclusion sentences, each event 

could be assigned a different KT value. That is to say, 

both sentence types could contain certain events that 

describe observations, and others that represent analyses.  

Due to the more abstract level of information encoded by 

KT types, we believe them to be applicable both to 

abstracts and full papers. They can be considered as 

complementary to sentence or zone-based schemes, in 

allowing a finer-grained analysis of the different types of 

information that can occur within a particular sentence or 

zone type.  

We also envisage that the other dimensions of the scheme 

do not need to be expanded to allow annotation of full 

papers, as they all appear to represent general features 

that can be found in many types of text. For example, the 

use of three different levels of certainty is in line with an 

analysis of general characteristics of the English 

language (Hoye, 1997), rather than being specific to 

abstracts. The two-way distinctions of the Polarity and 

Source dimensions are also observable in any kind of 

academic writing. Similarly, the information encoded by 

the Manner dimension, whilst more domain specific, 

should also be applicable to full papers.  

The ability to apply the same meta-knowledge scheme to 

both abstracts and full papers has advantages not only in 

terms of comparing meta-knowledge characteristics 

between the two text types, but also in facilitating easy 

portability/scalability of systems trained to assign 

meta-knowledge to events either at the abstract or full 

paper level. In performing meta-knowledge annotation of 

full papers, careful consideration was given as to whether 

any aspects of event interpretation were missing from the 

scheme, or whether there were any events that could not 

be correctly characterised by the existing categories 

within the dimensions. 

4. Annotation of Full Papers 

We have applied our meta-knowledge annotation scheme 

to four full papers, which had previously been manually 

annotated with events, according to the GENIA event 

annotation scheme (Kim et al., 2008).  According to the 

previously proven consistency of the meta-knowledge 

annotation that can be achieved by following the 

guidelines (Thompson et al., 2011), regardless of 

annotator background, the meta-knowledge annotation 

was carried out manually by one of the authors, who has a 

background in computational linguistics. All events in 

the four papers were annotated with meta-knowledge, 

without any concerns regarding deficiencies in the 

existing scheme, either in terms of missing dimensions, 

or missing values in existing dimensions. This suggests 

that the scheme is fully portable between abstracts and 

full papers. 

Table 1 summarises the distribution of the annotations 

amongst the different categories for each dimension, and 

Table 2 shows the most frequent clues for each category 



and their relative frequencies, i.e., the percentage of 

events of the specified category in which the clue is 

annotated. Below, we provide a brief discussion of the 

results of our new annotation effort. We examine results 

at the level of the complete papers, and also consider the 

distributions of annotations within the major sections of 

the papers, i.e., Background, Methods, Results, 

Discussion and Conclusion.   

 4.1 Knowledge Type (KT) 

The most commonly annotated value is Observation, 

constituting just over a third of the total number of events. 

This is unsurprising, since a large proportion of most 

biomedical papers would be expected to report on 

definite experimental observations and results. 

Considering individual sections within the full papers, 

Observation events are most prevalent in Background  

(42% of all events in this section type).  It may seem 

surprising that the frequency of Observation events in 

Background is greater than in Results. However, 

Observation events can refer to previous work as well as 

current work, and the Background section will often refer 

to findings from a large number of related studies. In the 

Results section, approximately 36% of events describe 

observations; while in the Discussion section, the 

frequency of such events is even lower (32%). This is to 

be expected, since greater proportion of this section type 

would normally be analytical in nature.   

Only in a small fraction (12%) of the Observation events 

is the KT type determined by the presence of an explicit 

lexical clue (mostly sensory verbs).  In most cases, the 

tense of the event-trigger and the context of the event 

(both local and global position within the paper) were 

found to be important factors.  

The second most prevalent category is Other. These 

events generally constitute participants of other events 

whose KT value is Investigation, Analysis or Fact.  Out of 

the context of their parent event, these participant events 

have no specific KT interpretation.  No explicit lexical 

clues were annotated for this category.  

A relatively large proportion of events (more than one 

fifth) belong to the Analysis category.  This makes sense, 

given that analytical elements are normally to be found to 

some extent in most section types in full papers. These 

include the Background section, where such events are 

most likely to provide overviews or interpretations of 

previous work, as well the Results, Discussion and 

Conclusions sections, where analyses, interpretations and 

conclusions regarding authors’ own work most 

commonly appear. As may be expected, the frequency of 

Analysis events is highest in Discussion/Conclusion 

sections, where they constitute over one quarter (27%) of 

all events.  

An explicit lexical clue was found for each Analysis event. 

The clues comprised verbs, modal auxiliaries and certain 

adverbs (such as, thus and therefore).   

Almost 6% of the events belong to the Method category. 

Although full papers generally include a fairly large 

Methods section, the small number of events falling into 

this category is largely because the GENIA event 

annotation focusses on dynamic relations, i.e., at least 

one of the biological entities in the relationship is affected, 

with respect to its properties or its location, in the 

reported context. This means that descriptions of 

methods are often less relevant event annotation targets 

than are events describing observations and analyses.  

Our case study suggests that only a small proportion of 

events in full papers (around 4%) describe factual 

knowledge. Such events are not evenly distributed 

throughout papers, and occur most frequently in 

Background (7.5% of all events in this section type), in 

order to provide context for the new research described in 

the paper. They can also appear in the Discussion section 

(4.5% of events), where they may be contrasted or 

compared with the outcomes of the current study. As may 

be expected, factual knowledge is almost never referred 

to in the Results sections of papers. Similarly to the 

Observation category, most (85%) events from this 

category did not have an explicit lexical clue.  

 

Table 1: Category distribution  

The Investigation KT category is the least frequent. The 

results of our annotation experiment suggest that the 

Background section normally very briefly introduces the 

subject of investigation (2.5% of events in this section 

type). A slightly more detailed description of the 

investigation is then given in the Results section (5.4% of 

all events in this section type). It is also possible that the 

research goal will be very briefly reintroduced in the 

Dimension Category Events 

Relative 

Frequency 

(RF) 

Knowledge 

Type (KT) 

Analysis 381 22.3% 

Investigation 65 3.8% 

Observation 619 36.2% 

Fact 70 4.1% 

Method 100 5.8% 

Other 475 27.8% 

Certainty 

Level (CL) 

L1 39 2.3% 

L2 162 9.5% 

L3 1509 88.2% 

Polarity 
Negative 63 3.7% 

Positive 1647 96.3% 

Manner 

High 66 3.9% 

Low 15 0.9% 

Neutral 1629 95.3% 

Source 
Current 1369 80.1% 

Other 341 19.9% 

Hyper- 

Dimensions 

New 

Knowledge 
489 28.6% 

Hypothesis 259 15.1% 



Discussion section of the paper (an average of 1.8% of all 

events in this section type).  All Investigation events were 

accompanied by an explicit lexical clue.  

4.2 Certainty Level (CL) 

Almost 12% of all events in our full paper sample are 

expressed with some degree of uncertainty, almost all of 

which belong to the KT type Analysis. Taking this into 

account, the need for this dimension becomes more 

apparent: whilst under half of Analysis events (47%) are 

stated with no uncertainty, this also means that over a half 

of these events do express some kind of uncertainty. In 

fact, 43% of all Analysis events are annotated as having 

slight speculation (L2), whilst 10% are reported with 

greater speculation (L1). The marking of uncertainty is 

sometimes necessary in scientific research literature.  

Analyses of experimental results may constitute 

important outcomes, but yet the authors are not confident 

that their analysis is completely reliable. As stated by 

Hyland (1996), “Scientists gain credibility by stating the 

strongest claims they can for their evidence, but they also 

need to insure against overstatement.” (p. 257). Authors 

often achieve this by using slight hedging (L2). Greater 

speculation (L1) is less common, as credibility is reduced 

in this case.  

Considering individual sections helps to confirm 

Hyland’s statement. Although the proportion of Analysis 

events that are assigned a CL value of L1 is fairly constant 

in the Background, Results and Discussion sections, the 

proportions of L2 events have more variation. The 

relative frequency is lowest in the Background sections 

(36% of Analysis events). Since this type of section deals 

mainly with reporting the work of others, there may be 

less need to hedge, as it is not the authors’ own credibility 

at stake. In contrast, the relative frequency of slightly 

hedged Analysis events is noticeably higher in the Results 

and Discussion sections (46% and 51%), respectively, 

where the authors’ own work is the main focus, and hence 

interpretations and analyses of results are often stated 

more tentatively.  

In terms of clues, modal auxiliaries account for most 

(70%) of the L1 events, while the clues for L2 include 

both verbs and modals. 

4.3 Polarity  

Just under 4% of all events are negated. Almost all 

negated events belong to the KT categories of 

Observation or Analysis, which is fairly intuitive. One 

would not, for example, expect to encounter many cases 

where Investigation or Method events are negated.  The 

distributions of negated events vary across different 

sections of the full papers. The proportions encountered 

in Background and Discussion sections are quite similar 

to each other (around 2% in each section), compared to 

around 6% of negated events in Results sections. Thus, it 

appears that it is very rare for anything other than positive 

results to be mentioned in the former two section types. In 

contrast, when reporting directly on one’s own 

experimental results, negative results are mentioned more 

frequently.  

Although several negation clues were annotated, the 

adverbial not accounts for over half of negated events.  

 

Table 2: Most frequent clues for each category together 

with relative frequencies (RF) 

4.4 Manner 

Almost 5% of all events are expressed with a Manner 

other than Neutral. This proportion is fairly constant in 

the Background, Results and Discussion sections of the 

full papers, showing that, although fairly rare, 

information about the manner of events can be of 

relevance to the discussion in various different parts of 

the paper. However, the expression of High manner is 4 

times more frequent than that of Low manner. Similarly 

to negation, most High and Manner events belong to KT 

categories of Observation or Analysis.  

Another similar pattern to the Polarity dimension is that 

events with a Manner value of Low seem to appear with 

any regularity only in the Results sections of the papers, 

Dimension Category 
Most Frequent Clues and 

their RF 

Knowledge 

Type 

Analysis 

show (16%), demonstrate 

(14%), indicate (9%), suggest 

(7%), reveal (5%), can (4%), 

thus (3%), may (3%) 

Investigation 

determine (19%), analyze 

(15%), elucidate (11%), 

evaluate (9%), detect (5%), 

indicate (5%), test (5%), 

examine (3%), investigate 

(3%) 

Observation 

observe (4%), find (3%), show 

(1%), document (1%), exhibit 

(1%) 

Fact 

known (6%), well established 

(3%), well known (2%), fact 

(2%) 

Certainty 

Level 

L1 

may (54%), can (15%), 

possibility (10%), not clear 

(5%), not understood (5%) 

L2 

indicate (22%), can (15%), 

suggest (11%), ability (6%), 

able (6%), potential (4%), 

hypothesize (3%), imply (3%), 

suspect (3%) 

Polarity Negative 

not (57%), no (18%), failure 

(10%), non (8%), fail (2%), 

inability (2%) 

Manner 

High 

significantly (17%), well 

(12%), much (11%), n-fold 

(9%), strong (9%), strongly 

(6%), high (3%), higher (3%) 

Low 

minimal (13%), little (13%), 

weak (13%), weaker (13%), 

n% (7%), less (7%) 

Source Other 

Citation (78%), has been 

(12%), previously (2%), 

recently (2%) 



where they appear with just over half the frequency of 

events whose Manner value is High. In contrast, the Low 

value was never annotated in the Background sections of 

the papers, and was only annotated for less than 1% of 

events in the Discussion sections. This suggests that 

events with Low manner constitute fairly insignificant 

information, and are normally mentioned only when 

reporting experimental results.   

Most manner clues are adverbs or adjectives; however 

numerical values (such as, n-fold and n%) are also used to 

express High manner.  

4.5 Source 

Nearly 20% of all events in the full papers belong to the 

Other category. The concentration of such events is 

highest in the Background sections of the papers, where 

over 40% of the events are attributed to other sources.  

This is expected, since the Background section normally 

contains the highest concentration of descriptions of 

previous work.  The Discussion sections of the papers 

also have a high (over 25%) concentration of Other 

events, since in this type of section, it is common to 

compare and contrast the outcomes of the current work 

with those of previous, related studies. The frequency of 

Other events in the remaining sections is considerably 

lower. For example, in the Results sections of the papers, 

less than 7% of events are annotated as Other. While 

citations accounted for most of the Other events, the use 

of past perfect tense and explicit markers (such as 

previously and recently) also served as clues. 

4.6 Hyper-Dimensions 

Using the annotations for KT, CL and Source dimensions, 

we computed the values for the New Knowledge and 

Hypothesis dimensions. We found that nearly 29% of all 

events conveyed new knowledge, and over 15% of all 

events represented hypotheses. Events conveying new 

knowledge were predominantly found in the Results, 

Discussion and Conclusion sections, while hypotheses 

were found in these sections as well as in the Background 

section. The Methods section contained hardly any 

hypotheses or claims of new knowledge.  

5. Comparison with Abstracts 

In this section, we compare the distribution of 

meta-knowledge annotation results obtained in our case 

study of full papers with those obtained for abstracts, as 

reported in Thompson et al. (2011). Table 3 shows the 

difference between the category distributions for full 

papers and abstracts. Below, we provide a brief 

discussion of the differences in each dimension. 

KT: The biggest difference is seen for the Method events, 

which are more than twice as abundant (in terms of 

relative frequency) in full papers than in abstracts. This is 

probably because abstracts tend to focus more on results 

and their significance, rather than how these results were 

obtained.  As mentioned above, however, the frequency 

of Method events is quite low even for full papers, due to 

the “dynamic” nature of GENIA events.  

A further feature of abstracts is that they tend to contain 

one or two sentences summarising current knowledge 

(i.e., well known facts) in the relevant field.  Since the 

average size of abstracts in the GENIA event corpus is 9 

to 10 sentences (Kim et al., 2008),  the relative frequency 

of facts in abstracts is quite high (over 8%).  This 

proportion is comparable to the number of factual events 

in Background sections of full papers (over 7% of all 

events in this section type), where the current state of 

knowledge is also discussed in some detail. However, as 

was explained in section 4.1, events describing facts are 

far scarcer in the other sections of full papers and, given 

the overall length of papers, the relative frequency of 

Fact events in full papers as a whole is only around half 

of the frequency in abstracts.  

Regarding Investigation events, their relative frequency 

in the Results sections of the full papers is comparable to 

their relative frequency in abstracts (around 5%). 

However, similarly to the Fact category, the extremely 

rare appearance of Investigation events in other sections 

of full papers means that overall relative frequency in full 

papers is also much lower than in abstracts.   

The relative frequency of Analysis events is around 25% 

higher in full papers than in abstracts. As explained in the 

previous section, and in contrast to  

Fact and Investigation events, Analysis events are found 

with quite high frequency in several sections of full 

papers. For the Other and particularly the Observation 

categories, there is much less variation between the 

relative frequencies in full papers and abstracts. Thus, 

clear reporting of experimental observations is equally 

important throughout both full papers and abstracts. 

CL: Owing to the very nature of abstracts, a high 

proportion of events with no uncertainty is to be expected. 

As authors aim to “sell” the most positive aspects of their 

work in abstracts, it makes sense that the majority of 

analyses should be presented in a confident manner.  

However, as explained in section 4.2, authors tend to be 

more cautious while detailing their results and findings in 

the main body of papers, in order to maintain credibility 

in case their results are later disproved.  The fact that 

the proportion of slightly hedged Analysis events is 

particularly high in the Results, Discussion and 

Conclusion sections of full papers, rising as high as 51% 

in the Discussion sections, helps to explain why L2 

events are over 57% more frequent in full papers than in 

abstracts. The relative frequency of L1 events is also 

higher in full papers by about 10%.  

Polarity: The relative frequency of negated events is 

significantly (67%) higher in abstracts than in full papers. 

This is partly due to the fact that negative results are 

sometimes more significant than positive results (Knight, 

2003), and are therefore, highlighted in the abstracts. In 

addition, since negated events only appear with any 

regularity in the Results sections of full papers, this helps 

to explain their lower relative frequency than in abstracts 

when the complete paper is considered.  

Manner: The distribution of High and Neutral manner is 

very similar in abstracts and full papers, and the 



distribution of Low manner is exactly same. This follows 

the same trend described in section 4.4, where it was also 

noted that the proportions of events with explicit manner 

markings are also fairly similar across several individual 

section types within full papers. 

Table 3: Difference between relative frequencies (RF) of 

categories in full papers (FP) and abstracts (A) 

Source: This is the dimension for which the largest 

difference in category distribution exists between 

abstracts and full papers. Full papers contain 12.5 times 

as many Other events as abstracts. This is mainly because 

abstracts are meant to summarise the work carried out in 

the current study.  Furthermore, citations, which are the 

most common way to denote previous work, are often not 

allowed in abstracts. In contrast, full papers normally 

mention related work quite extensively, most notably in 

Background and Discussion section.  

Hyper-Dimensions: While the relative frequency of 

Hypothesis events is higher in full papers, the proportion 

of New Knowledge events is significantly higher in 

abstracts. This is mainly because, in abstracts, authors 

typically include most of new discoveries and results, 

while only mentioning the main hypotheses.  

6. Conclusion 

In this article, we have described a case study to 

investigate the feasibility of applying an event level 

meta-knowledge annotation scheme (Thompson et al, 

2011), whose design was originally guided only by 

reference to abstracts, to full papers. This is important, 

given that work on event extraction is gradually being 

scaled from abstracts to full papers, and also that the 

automatic recognition of meta-knowledge about events 

can be highly useful for building more sophisticated IE 

systems. Our case study involved the annotation of 4 full 

papers using the meta-knowledge annotation guidelines 

described in Thompson et al. (2011). The results of the 

case study strongly suggest that the existing 

meta-knowledge annotation scheme can be successfully 

applied to full papers, without any modifications 

In order to help to guide the engineering of features for 

event-based meta-knowledge assignment systems trained 

on full papers, we conducted an analysis of the 

meta-knowledge annotations created during our case 

study. The analysis was concerned not only with the 

overall distribution of meta-knowledge categories in the 

full papers, but also with comparisons of the distributions 

of meta-knowledge categories, both between different 

sections of the papers, and also with meta-knowledge 

annotations added to the GENIA Event corpus of 

MEDLINE abstracts (Thompson et al., 2011). In certain 

cases, notable differences in the distribution of categories 

within particular dimensions could be observed both 

between the different sections of full papers, as well as 

between full papers and abstracts. This suggests that it 

may be appropriate to train separate meta-knowledge 

classifiers for full papers and abstracts. It may also be 

advantageous to use section-specific classifiers within 

full papers.   

Based upon the demonstrated applicability of the 

meta-knowledge annotation scheme to full papers, we 

plan to embark upon a larger annotation effort to enrich 

all full papers from the BioNLP 2011 GENIA event task 

with meta-knowledge annotation, in order to increase the 

amount of annotated data available for training 

meta-knowledge assignment systems that can operate on 

full papers. We will also aim to enrich other 

event-annotated corpora released as part of other tasks in 

the BioNLP 2011 Shared Task, which include both full 

papers and abstracts dealing with different domains.  
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