STEPP Tagger

1. BASIC INFORMATION

Tool name

STEPP Tagger

Overview and purpose of the tool

Part-of-speech tagger tuned to biomedical text. Given plain text, sentences and tokens are identified, and tokens are assigned part-of-speech tags.

A short description of the algorithm

The algorithm uses a combination of Conditional Random Fields (CRFs) (Lafferty et. al., 2001) and methods of maximum entropy (ME) tagging called two-phase ME tagging, which is based on an ME tagger introduced by Tsuruoka and Tsujii (2005).

2. TECHNICAL INFORMATION

Software dependencies and system requirements

The tool is provided as a web service. Thus, the tool can be run from any computer connected to the internet.

Installation

No installation is required to run the web service. It is available at $\underline{http://nactem001.mib.man.ac.uk:8080/UCompareDemo/SteppTaggerWithTokenisationn}$

Execution instructions

The web service provides a demo form that allows the web service to be tested. An example of calling the web service from Java code is as follows:

```
String text = "Hello Mr. John Smith !";
String parameters = "text=" + URLEncoder.encode(text,
"UTF-8") + "&mode=inline";
URL url = new URL
("http://nactem001.mib.man.ac.uk:8080/UCompareDemo/SteppT
aggerWithTokenisation");
URLConnection connection = url.openConnection();
connection.setDoOutput(true);
OutputStreamWriter writer = new
OutputStreamWriter(connection.getOutputStream());
writer.write(parameters);
```

```
writer.flush();
BufferedReader reader = new BufferedReader
(new InputStreamReader(connection.getInputStream(), "UTF-
8"));
String line;
while ((line = reader.readLine()) != null) {
    System.out.println(line);
}
```

Input/Output data formats

Input data formats

The input to the web service is plain text.

Output data format

The web service outputs XML. There is a Sentence element for each sentence identified in the input text, and a SteppToken element for each token identified. The SteppToken elements have 3 attributes, begin, end and posString, which store the beginning and end offsets of the token, and the part-of-speech tag, respectively.

Integration with external tools

As mentioned above, the web service can be called from program code, and so can be incorporated into applications straightforwardly.

3. CONTENT INFORMATION

The demo interface for the web service is shown in Figure 1. The interface provides some sample texts. Using the radio buttons above the text area, The user can choose to view the XML output, or the more user-friendly "inline annotations", which provide an HTML visualisation of the annotations produced by the web service. Part of this visualisation is shown in Figure 2. The user can choose which type of output annotations to view using the check boxes.

The National Centre			
for Text Mining			
Examples			
Example abstracts	O XML d	ocument 🔘 inline XML 💿 stand-off annotat	ion
PMC_1804205	Association of N-glycosylation of apolipoprotein B-100 v	with plasma cholesterol levels in Watanabe heritab	le hyperlipidemic rabbi
PMC_1874608	We have previously demonstrated the heterogeneity of	N-linked sugar chains of apolipoprotein (apo) B-10	00 in Watanabe heritat
PMC_2358977	(WHHL) rabbit and fasting Japanese White rabbits (Arte	eriosclerosis, 10 (1990) 386-393). To investigate fu	urther the role of N-link
PMC_2651894	B-100 in lipid metabolism, we examined the correlation	between the N-glycosylation of apo B-100 and se	rum cholesterol levels
PMC_2714965	N-linked sugar chains of apo B-100 were liberated by h	ydrazinolysis, followed by NaB3H4 reduction and v	vere fractionated by pa
PMID_1590827	BioGel P-4 column chromatography. These were found	to consist of one neutral (N) and two acidic fraction	ns (A1 and A2). N con
PMID_11393792	type oligosaccharide consisting of Man5.GlcNAc2 to Ma	n9.GlcNAc2, while A1 and A2 contained monosialy	lated and disialylated o
PMID_16583246	oligosaccharides, respectively. The molar ratio varied an	mong the 5 WHHL rabbits. There was an inverse o	orrelation between the
PMID_17709377	oligosaccharide fractions (A1 + A2) and serum choleste	erol levels (r = -0.971, P less than 0.01) in the 5 W	HHL rabbits. These res
PMID_18264140	N-glycosylation of apo B-100 is closely related to choles	sterol metabolism in WHHL rabbits.	
PMID_18286479			
PMID_18296627			
PMID_19609235			
PMID_19781662			
PMID 20184394			
11110_20101001			
11110_20101391	Run		

Service Description	Usage
enter a description of this web service	POST request should be sent to use the service 1) text - the value of this parameter is the text to analyze. Expected encoding is
References	Application programming interface
	String text = "Hello Mr. John Smith !";

Contact

If you need more information about U-Compare services, send us an $\ensuremath{\mathsf{email}}$

Figure 1: Demo interface for the STEPP tagger web service

Select type of annotation

SteppToken 📃 Sentence

Association of N	l-glycosylati
heterogeneity of	N-linked su
serum cholester) . 10 investi ol levels in V
electrophoresis	and BioGel H
oligosaccharide	consisting o
ratio varied amo	ng the 5 WH
StonnTokon	nocEtring
Association	NND
of	ININE
N alveoryletics	NINID
IN-glycosylation	ININP
01	
apolipoprotein	11
B-100	NN
with	IN
plasma	NN
cholesterol	NN
levels	NNS
in	IN
Watanabe	NNP
heritable	11
hyperlipidemic	11
rabbits	NNS
We	PRP
have	VBP
previously	RB
demonstrated	VBN
the	DT
heterogeneity	NN
of	IN
N-linked	IJ
sugar	NN
chains	NNS
c	T 1 1 1 0

Figure 1: Inline HTML visualisation of the output of the STEPP tagger, with Stepp Token annotations visualised. The table provides details of the annotations.

3. LICENCES

a) The Stepp Tagger web service is licensed using the NaCTeM Web Service Licence Agreement (standard non-commercial use)– see "STEPP-Tagger-licence.pdf" in the "licences" directory. Please contact us using the details below if you require a commercial licence.

b) The web service is dependent on the UIMA framework, which is licenced using the Apache licence. Please see "Apache.txt" in the licenses directory.

4. ADMINISTRATIVE INFORMATION

Contact

For further information, please contact Sophia Ananiadou: sophia.ananiadou@manchester.ac.uk

5. REFERENCES

John Lafferty, AndrewMcCallum, and Fernando Pereira (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML 2001, pages 282–289.

Yoshimasa Tsuruoka and Jun'ichi Tsujii. 2005. Bidirectional inference with the easiest-first strategy for tagging sequence data. In Proceedings of HLT/EMNLP 2005. pages 467–474.