Gene/Protein Disease Symptom Drug Enzyme Compound
Pivot Concepts:   Target Concepts:
Query: CAS:1071-83-6 (Glyphosate)
1,313 document(s) hit in 31,850,051 MEDLINE articles (0.00 seconds)

In Oreochromis niloticus that had been exposed for 3 months to sublethal concentrations (5 and 15 ppm) of the commercial glyphosate herbicide (C(3)H(8)NO(5)P) Roundup, the organs exhibited varying degrees of histopathological change. In the gills filament cell proliferation, lamellar cell hyperplasia, lamellar fusion, epithelial lifting, and aneurysm were observed. In the liver there were vacuolation of hepatocytes and nuclear pyknosis. Kidney lesions consisted of dilation of Bowman's space and accumulation of hyaline droplets in the tubular epithelial cells. The structural damages could be correlated to the significant increase (p </= 0.05) in aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities in the second and third months of exposure. The results indicated that long-term exposure to glyphosate at sublethal concentrations had adverse effects on the histopathological and biochemical alterations of the fish.
PMID:Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). 1290 Sep 45

The object of this study was to analyze the hepatic effects of the herbicide Glyphosate-Biocarb (as commercialized in Brazil) in Wistar rats. Animals were treated orally with water or 4.87, 48.7, or 487 mg/kg of glyphosate each 2 days, during 75 days. Sub-chronic treatment of animals starting from the lowest dose of glyphosate induced the leakage of hepatic intracellular enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), suggesting irreversible damage in hepatocytes. We observed the increase of Kupffer cells in hepatic sinusoid of glyphosate-treated animals. This was followed by large deposition of reticulin fibers, composed mainly of collagen type III. We may conclude that Glyphosate-Biocarb may induce hepatic histological changes as well as AST and ALT leaking from liver to serum in experimental models.
PMID:The effects of sub-chronic exposure of Wistar rats to the herbicide Glyphosate-Biocarb. 1545 53

Roundup is a glyphosate-based herbicide that includes 78.5% glyphosate and surfactant at lower toxic concentrations. Glyphosate is an organophosphorated non-selective agrochemical widely used in many countries including Turkey and acts after the sprout in a systemic way. The objective of this study was to analyze toxic effects of the herbicide Roundup in rat liver. Animals were treated with 56mg/kg (p.o.) and 560mg/kg (p.o.) of Roundup (78% glyphosate+surfactant) each day, during 5 and 13 weeks. Hepatotoxicity was monitored by quantitative analysis of the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities and measured amount of serum lipoprotein (LDL, HDL), total cholesterol and creatinine were used as the biochemical markers of liver damages. Besides the biochemical analysis, we also investigated liver tissues histopathologically. Sub-chronic treatment, starting from the low and high doses of Roundup, it was observed that there were mild effects on activity of ALT, AST and LDH enzymes indicating the hepatic toxicity induced by Roundup. It was found that the mild effects were different on the enzymes in male and female rats of treatment groups. Also it was found some difference in serum lipoprotein (LDL, HDL) and t-cholesterol. There was no difference creatinine value between control and treatment groups but it was observed that degenerative formation such as mononuclear cell infiltration and congestion of the liver tissues of treatment groups.
PMID:The effect of sub-acute and sub-chronic exposure of rats to the glyphosate-based herbicide Roundup. 2178 36

Glyphosate is the active ingredient and polyoxyethyleneamine, the major component, is the surfactant present in the herbicide Roundup formulation. The objective of this study was to analyze potential cytotoxicity of the Roundup and its fundamental substance (glyphosate). Albino male rats were intraperitoneally treated with sub-lethal concentration of Roundup (269.9mg/kg) or glyphosate (134.95mg/kg) each 2 days, during 2 weeks. Hepatotoxicity was monitored by quantitative analysis of the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities, total protein, albumin, triglyceride and cholesterol. Creatinine and urea were used as the biochemical markers of kidney damages. The second aim of this study to investigate how glyphosate alone or included in herbicide Roundup affected hepatic reduced glutathione (GSH) and lipid peroxidation (LPO) levels of animals as an index of antioxidant status and oxidative stress, respectively, as well as the serum nitric oxide (NO) and alpha tumour necrosis factor (TNF-α) were measured. Treatment of animals with Roundup induced the leakage of hepatic intracellular enzymes, ALT, AST and ALP suggesting irreversible damage in hepatocytes starting from the first week. It was found that the effects were different on the enzymes in Roundup and glyphosate-treated groups. Significant time-dependent depletion of GSH levels and induction of oxidative stress in liver by the elevated levels of LPO, further confirmed the potential of Roundup to induce oxidative stress in hepatic tissue. However, glyphosate caused significant increases in NO levels more than Roundup after 2 weeks of treatment. Both treatments increased the level of TNF-α by the same manner. The results suggest that excessive antioxidant disruptor and oxidative stress is induced with Roundup than glyphosate.
PMID:Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. 2178 30

We evaluated the toxicity of hepatic, hematological, and oxidative effects of glyphosate-Roundup(®) on male and female albino Swiss mice. The animals were treated orally with either 50 or 500 mg/kg body weight of the herbicide, on a daily basis for a period of 15 days. Distilled water was used as control treatment. Samples of blood and hepatic tissue were collected at the end of the treatment. Hepatotoxicity was monitored by quantitative analysis of the serum enzymes ALT, AST, and γ-GT and renal toxicity by urea and creatinine. We also investigated liver tissues histopathologically. Alterations of hematological parameters were monitored by RBC, WBC, hemoglobin, hematocrit, MCV, MCH, and MCHC. TBARS (thiobarbituric acid reactive substances) and NPSH (non-protein thiols) were analyzed in the liver to assess oxidative damage. Significant increases in the levels of hepatic enzymes (ALT, AST, and γ-GT) were observed for both herbicide treatments, but no considerable differences were found by histological analysis. The hematological parameters showed significant alterations (500 mg/kg body weight) with reductions of RBC, hematocrit, and hemoglobin, together with a significant increase of MCV, in both sexes of mice. In males, there was an important increase in lipid peroxidation at both dosage levels, together with an NPSH decrease in the hepatic tissue, whereas in females significant changes in these parameters were observed only at the higher dose rate. The results of this study indicate that glyphosate-Roundup(®) can promote hematological and hepatic alterations, even at subacute exposure, which could be related to the induction of reactive oxygen species.
PMID:Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup(®). 2355 53

This study examined the effect of glyphosate-based herbicide (Roundup Original), the major herbicide used in soybean crops in Mato Grosso state, at concentrations of 0, 2.25, 4.5, 7.5, and 15 mg L(-1) on metabolic and behavior parameters of the hybrid fish surubim in an acute exposure lasting 96 h. Glycogen content, glucose, lactate, and protein levels were measured in different tissues. Plasma levels of cholesterol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were also determined. Ventilatory frequency (VF) and swimming activity (SA) were considered behavior parameters. Results showed that herbicide exposure decreased plasma glucose levels and increased it in surubim liver. Lactate increased in both plasma and liver but decreased in muscle. Protein levels decreased in plasma and muscle but increased in liver. After herbicide exposure, liver and muscle glycogen was decreased. Cholesterol levels decreased in plasma at all concentrations tested. Plasma ALT increased, and no alterations were recorded for AST levels. VF increased after glyphosate exposure (5 min) and decreased after 96 h. SA showed differences among all groups (5 min). At the end of 96 h, SA was altered by the 7.5 mg L(-1) concentration. Fish used anaerobic glycolysis as indicated by generally decreased glycogen levels and decreased lactate levels in muscle but increased ones in plasma and liver. We suggest that the studied parameters could be used as indicators of herbicide toxicity in surubim and may provide extremely important information for understanding the biology of the animal and its responsiveness to external stimuli (stressors).
PMID:Metabolic and behavior changes in surubim acutely exposed to a glyphosate-based herbicide. 2514 81

The goal of the present study was to elucidate the in vitro cytotoxicity of Roundup and to reveal the possible related mechanisms in L-02 hepatocytes. By detecting reactive oxygen species (ROS) production, glutathione (GSH)/superoxide dismutase (SOD) levels, mitochondrial permeability transition pore (PTP) open rate, apoptosis-inducing factor (AIF) release, intracellular Ca2+ concentration, and alanine aminotransferease (ALT)/aspartate aminotransferase (AST) leakage, we determined that Roundup induced anti-oxidant system inhibition, mitochondria damage, DNA damage, membrane integrity and permeability changes, and apoptosis in L-02 hepatocytes. By revealing the mechanistic insights of Roundup-induced cytotoxicity, our results are valuable for the design of preventive and therapeutic strategies for the occupational population exposed to Roundup and other pesticides.
PMID:In vitro cytotoxicity assessment of roundup (glyphosate) in L-02 hepatocytes. 2828 94

Glyphosate is an efficient herbicide widely used worldwide. However, its toxicity to non-targeted organisms has not been fully elucidated. In this study, the toxicity of glyphosate-based herbicide was evaluated on goldfish (Carassius auratus) after long-term exposure. Tissues of brains, kidneys and livers were collected and submitted to NMR-based metabolomics analysis and histopathological inspection. Plasma was collected and the blood biochemical indexes of AST, ALT, BUN, CRE, LDH, SOD, GSH-Px, GR and MDA were measured. Long-term glyphosate exposure caused disorders of blood biochemical indexes and renal tissue injury in goldfish. Metabolomics analysis combined with correlation network analysis uncovered significant perturbations in oxidative stress, energy metabolism, amino acids metabolism and nucleosides metabolism in glyphosate dosed fish, which provide new clues to the toxicity of glyphosate. This integrated metabolomics approach showed its applicability in discovering the toxic mechanisms of pesticides, which provided new strategy for the assessment of the environmental risk of herbicides to non-target organisms.
PMID:Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure. 2852 18

Glyphosate (N-phosphonomethyl-glycine, GLP) is the most popular herbicide used worldwide. This study aimed to investigate the effects of glyphosate on rats' liver function and induction of pathological changes in ion levels and oxidative stress in hepatic tissue. Sprague-Dawley rats were treated orally with 0, 5, 50, and 500 mg/kg body weight of the GLP. After 5 weeks of treatment, blood and liver samples were analyzed for biochemical and histomorphological parameters. The various mineral elements content in the organs of the rats were also measured. Significant decreases were shown in the weights of body, liver, kidney and spleen between the control and treatment groups. Changes also happened in the histomorphology of the liver and kidney tissue of GLP-treated rats. The GLP resulted in an elevated level of glutamic-oxalacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and IL-1β in the serum. Besides, decreased total superoxide dismutase (T-SOD) activity and increased malondialdehyde (MDA) contents in the serum, liver, and kidney indicated the presence of oxidative stress. Moreover, increase of hydrogen peroxide (H2O2) level and catalase (CAT) activity in the serum and liver and decrease of glutathione (GSH) and lutathione peroxidase (GSH-Px) activity in the kidney tissue further confirmed the occurrence of oxidative stress. The results of RT-PCR showed that the mRNA expressions of IL-1α, IL-1β, IL-6, MAPK3, NF-κB, SIRT1, TNF-α, Keap1, GPX2, and Caspase-3 were significantly increased in the GLP-treated groups compared to the control group. Furthermore, PPARα, DGAT, SREBP1c, and SCD1 mRNA expressions were also remarkably increased in the GLP-treated groups compared to the control group. In addition, aluminum (Al), iron (Fe), copper (Cu), zinc (Zn), and magnesium (Mg) levels were showed a significant difference reduction or increase in rat liver, kidney, spleen, lung, heart, muscle, brain, and fat tissues. These results suggested that glyphosate caused obvious damage to rats' liver and caused various mineral elements content imbalances in various organs of rats. Ion imbalance could weaken antioxidant capacity and involve in the mechanism of liver oxidative damage caused by GLP.
PMID:Ion Imbalance Is Involved in the Mechanisms of Liver Oxidative Damage in Rats Exposed to Glyphosate. 2931 96

Most genetically modified crops are engineered for herbicide tolerance, among them, glyphosate tolerant crops have the greatest share. Glyphosate is one of the most extensively used herbicides worldwide. The popularity of glyphosate stems from its low cost, low environmental impact, and effectiveness while being safe for animals. The toxicity of glyphosate to untargeted organisms was studied using goldfish (Carassius auratus) after exposure to different concentrations of glyphosate isopropylamine salt, a glyphosate based herbicide for 96 hours. Tissues of brain, kidney and liver were collected and subjected to NMR-based metabolomics analysis and histopathological inspection. Plasma was collected and the hematological parameters of glutamic-oxaloacetic transaminase (GOT), glutamate-pyruvate transaminase (GPT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN) and creatinine (CRE) were quantified. Glyphosate produced an increase in the hematological parameters of BUN and CRE and dose-dependent injuries. Metabolomics analysis revealed significant perturbations in neurotransmitter equilibrium, energy metabolism and amino acid metabolism in glyphosate dosed fish, which are associated with the toxicity of glyphosate. The results highlight the vulnerability of glutaminergic neurons to glyphosate and enlighten the potential of glutamine as an early marker of glyphosate induced neurotoxicity.
PMID:Multi-tissue metabolic responses of goldfish (Carassius auratus) exposed to glyphosate-based herbicide. 3009 Apr 11

1 2 Next >>