Syntactic Dependency Based Heuristics for Biological Event Extraction

Halil Kilicoglu and Sabine Bergler

CLaC Lab Department of Computer Science and Software Engineering Concordia University

June 5, 2009

Introduction

Summary

- BioNLP'09 Event Extraction Shared Task participation
 - Task 1: Core event extraction (3rd place)
 - Task 3: Speculation and negation recognition (1st place)
- Rule-based methodology
 - Statistical compilation of a dictionary of event triggers with limited expansion
 - Grammar for participant identification from dependency parse
 - Heuristics-based speculation and negation detection

Introduction

Related Work

- Speculation recognition
 - Speculative sentences vs. non-speculative sentences
 - Supervised machine learning techniques [Light et al., 2004; Medlock and Briscoe, 2007; Szarvas, 2008]
 - Lexico-syntactic patterns [Kilicoglu and Bergler, 2008]
- Negation detection
 - Identification of negated terms or concepts
 - Machine learning techniques [Goldin and Chapman, 2003; Averbuch et al., 2004]
 - Pattern-based approaches [Mutalik et al., 2001; Chapman et al., 2001]
- Recent interest in negation and speculation scope identification
 - Memory-based classification [Morante et al., 2008]

Preprocessing

- Create an enriched XML representation of documents
 - Sentences, entities and their offset positions
 - Word information: tokens, POS tags, lemmas and indexes
 - Dependency parses of sentences
- Stanford Lexicalized Parser for word information and dependency parsing

Core Event Extraction Pipeline

- 1 Determine event triggers and their event types
 - Dictionary lookup and "goodness score"
- 2 Identify potential arguments
 - Participant identification grammar
- 3 Recursive sub-event identification for regulatory events
- 4 Post-processing rules for event trigger limitations

Event Triggers

- A dictionary of event triggers drawn from training data
- Event triggers: verbs, nouns and adjectives (predicates)
- Limited term expansion and filtering
 - Both hyphenated and non-hyphenated forms of prefixed triggers (e.g., co-, down-, up-, trans-)
 - Derivational forms (e.g., *dimerization* after *dimerize*)
 - Weak event trigger elimination (e.g., *absence* for Negative_regulation)
 - No multi-word event triggers
- Event trigger/event type "goodness score"
 - Maximum likelihood estimation
 - Used as a threshold

Event Participant Identification

- Based on rules using "collapsed" Stanford dependency relations
- Extracted and ranked the dependency paths between event triggers and participants
 - Frequency of occurrence

Dependency	POS	Role	Event	Trigger
dobj ¹	VB	Theme	*	*
nsubj ²	IJ	Cause	[Regulatory]	[responsible,sufficient,]
prep_to ³	VB	Theme	Binding	*
prep_to	VB	Theme	Pos.regulation	[lead,contribute]
prep_between ⁴	NN*	Theme	Binding	[association,interaction]

¹direct object

- ²nominal subject
- ³prepositional phrase headed by to
- ⁴prepositional phrase headed by *between*

Syntactic Dependency Based Heuristics for Biological Event Extraction

└─ Task 1: Core Event Extraction

Special Considerations for Regulatory Events

- Events as event participants
 - Dependency path between the event trigger and the sub-event trigger
 - We have examined the effect of LTB4 on the expression of
- Hyphenated participle modifiers
 - Additional rule without dependency relations
 - LPS-mediated TF expression ...
- Reversal of semantic roles for require and involve
- "Corrected" dependency paths for PP attachment errors
 For certain trigger words (e.g., *effect, influence, role*)
 dobj(examined, effect)

 $prep_on(examined, expression) \Rightarrow prep_on(effect, expression)$

Coordination and Apposition

- Coordination
 - Both event trigger and participant coordination
 - Derived from dependency relations (conj_*)
 - Additional rules for better resolution of coordinated entities
 - Separated by comma or semi-colon
 - Separated by a coordinating conjunction
 - Separated by parenthetical expression
 - Combination of above
 - Interleukin-2 (IL-2) and IL-4 gene transcription

Apposition

- An entity and a word in an apposition construction are considered equivalent
- Derived from dependency relations (e.g., *appos*, *abbrev*)
- ... regulation of inflammatory cytokine genes including TNF, prep_of(regulation,genes) prep_including(genes,TNF)

Postprocessing Rules

- Loosen the strict assumptions about event triggers
- Multi-word event triggers
 - (positive OR negative) + nominal Regulation trigger OR (positively OR negatively) + verbal Regulation trigger ⇒ Positive_regulation OR Negative_regulation
- "One trigger-one event" limitation
 - overexpression, transfect, etc.

Core Event Extraction Results

Event Class	Recall	Precision	F-score	Rank
Simple events	43.10	73.47	54.33	5
Regulatory events	27.47	49.89	35.43	2
TOTAL	34.98	61.59	44.62	3

- Our system favors precision over recall
- The results at empirically determined "goodness score" threshold of .08
- No special treatment of simple events
- Special focus on regulatory events
 - Led to better ranking

Core Event Extraction Errors

- Naive view of event triggers
 - "Once a trigger-always a trigger" (precision errors) (e.g., oligomerization)
 - Previously unseen triggers (recall errors)
- Errors in dependency relations
- Pattern incompleteness
- Anaphoric expressions
- Events spanning multiple sentences

Task 3: Speculation and Negation Recognition

Speculation Recognition

- Refinement of a speculation cue dictionary developed in prior work [Kilicoglu and Bergler, 2008]
 - Ignore some cue classes completely (modal verbs, epistemic adverbs)
 - Introduce a new speculative verb class (active cognition verbs)
 - examine, evaluate, analyze, study, investigate
 - Consider the nominal forms as well
- Speculation scope
 - A dependency path between the speculation cue and the event trigger
 - ... these data suggest that ETS1 may be involved in mediating the increased GM-CSF production ... ccomp(suggest,involved)

Task 3: Speculation and Negation Recognition

Negation Detection

- Lexical cues
- Syntactic dependency rules between lexical cues and event triggers

Cue	Dependency
lack, absence	prep_of
inability, failure	infmod
no, not, cannot	det

- Certain dependencies involving the event trigger (e.g., neg, conj_negcc)
- A negation cue word preceding the event trigger or an event participant (*no*, *not*, *cannot*)

Task 3: Speculation and Negation Recognition

Speculation and Negation Recognition Results

	Recall	Precision	F-score	Rank
Speculation	16.83	50.72	25.27	1
Negation	14.98	50.75	23.13	1
TOTAL	15.86	50.74	24.17	1

- Misidentified or missed base events
- Errors due to speculation and negation detection module
 - Speculation: 4 false positives (out of 39), 7 false negatives (out of 95)
 - Negation: 5 false positives (out of 31), 5 false negatives (out of 107)

Syntactic Dependency Based Heuristics for Biological Event Extraction

Task 3: Speculation and Negation Recognition

Speculation and Negation Detection Errors

- False positive errors
 - Controversial false positive cases
 - An unidentified Ets family protein binds to ... and appears to negatively regulate the human IL-2R alpha promoter.
 - Difficult to annotate correctly and consistently
 - The negation pattern involving negation cues in the token preceding the event trigger
 - Introduced to increase recall
- False negative errors
 - Complex and infrequent patterns
 - suggest a molecular mechanism for the inhibition of
 - Galectin-3 is ... and is expressed in many leukocytes, with the notable exception of B and T lymphocytes

Conclusions

Conclusions and Future Work

- Dependency relations for biological event extraction as well as for speculation/negation detection
- Easy adaption of prior work, showing the portability and extensibility of a linguistically-oriented approach
- Difficulty of annotating speculation, necessity of developing annotation guidelines
- Anaphora resolution and multiple sentence spanning events
- Subcategorization information for event triggers
- Dependency relations extracted using constituent parses from different parsers (Charniak parser, etc.)