

## Biomedical Event Annotation with CRFs and Precision Grammars

### Andrew MacKinlay, David Martinez, Timothy Baldwin



www.nicta.com.au

Australian Government Department of Broadband, Communications and the Digital Economy

Australian Research Council



#### From imagination to impact



- Our motivation: deep linguistic processing for detection of speculation and negation
- Architecture:
  - Task 1:
    - Trigger word detection: CRF and Lookup systems
    - Event-theme construction (hand-crafted rules)
  - Task 3:
    - Deep parsing for semantic representation
    - Classification of events using Maximum Entropy



- Conditional probability distribution over label sequences given a particular observation sequence
- CRF++ toolkit (Sha and Pereira, 2003)
- Tested features: word-form, lemma, POS, chunking marks, protein NER, grammatical dependencies (from Bikel parser and GDep)
- JULIE-Lab sentence splitter and Genia Tagger for pre-process
- Window sizes:  $\pm 3$  and  $\pm 4$





- Best results (training data): Precision  $\sim$  66%, Recall  $\sim$  30%
- All features help except for grammatical dependencies
- ±3 window size



- Decision list for each trigger string found in training data
  - Simply assign highest frequency class
- Frequency cut-off
- We can reach high recall (~ 77%) but at the cost of precision (~ 13%)
- Best f-score  $\sim$  36% ( $\sim$  50% recall)



- Add all trigger words identified by CRF and look-up
- Two approaches:
  - Optimise per class (Optim)
  - Always preference to CRF (All)



- Approach: assign closest events/proteins as themes (without crossing sentence boundaries)
- Basic events:
  - Single closest protein
- Binding events:
  - Closest proteins
  - Parameters: maximum distance and number of themes
- Regulation events
  - Single closest protein or event (give precedence to events)
  - Parameters: maximum distance and detect/ignore CAUSE

### Task 1 Results



| System                     | Rec.  | Prec. | FSc.  |
|----------------------------|-------|-------|-------|
| Combined (Optim.)          | 17.44 | 39.99 | 24.29 |
| Combined (All)             | 24.36 | 30.87 | 27.23 |
| CRF                        | 12.23 | 62.24 | 20.44 |
| CRF (+ synt feats)         | 12.01 | 61.91 | 20.11 |
| Look-Up                    | 22.88 | 29.67 | 25.84 |
| Look-Up (freq $\geq$ = 20) | 23.26 | 26.74 | 24.88 |
| Look-Up (freq $>=$ 30)     | 21.37 | 30.50 | 25.13 |

Table: Task 1 results with approximate span matching, recursive evaluation (our final submission is in bold)





- English Resource Grammar (ERG): high-precision grammar in the HPSG framework
- GENIA tagger to deal with named entities
- 72% of training sentences parsed



- Semantic formalism: Robust Minimal Recursion Semantics
- Elementary Predicates (EP): Predicates with their arguments
- Relationships between trigger EP and lexical cues
  - Outscoping and shared-argument



- Pre-identify word lists:
  - Conjunctions: \_*not\_c*, \_*but+not\_c*, \_*nor\_c*
  - Other markers: \_only\_a, \_never\_a, \_not+as+yet\_a, \_not+as+yet\_a, \_unable\_a, neg\_rel
- Negative-outscope feature: when negative EP outscopes trigger-EP
  - E.g. "...product was **not (NEG-EP)** able to **bind (TRIG-EP)** DNA and..."
    - NegOutscope neg\_rel = 1
    - NegOutscope not = 1



- ...product was not able to bind DNA and was recovered in cytoplasmic cellular extracts...
- ERG analysis
  - **I8**: neg\_rel(692 : 695)(e9, ARG1: **h10**)
  - I11: \_able\_a\_1(696 : 700)(e12, ARG1: x6, ARG2: h13)
  - I14: \_bind\_v\_to(704 : 708)(e17, ARG1: x6, ARG2: x16, ARG3: u15)
  - h10 qeq l11, h13 qeq l14
- Thus I8 immediately outscopes I11, and I11 immediately outscopes I14



- Negative conjunction: when trigger-EP is the argument (ARG0) of a negative conjuction EP
  - E.g. "...but not (NEG-EP) binding (TRIG-EP) DNA..."
- When trigger-EP is the argument (ARG0) of a negatively-outscoped EP
  - E.g. "...the product (TRIG-EP) was never (NEG-EP) considered..."



- Pre-identify word lists:
  - Speculation verb short list: \_investigate, \_study, \_examine, \_test, \_evaluate, \_observe}
  - Extended list: adding WordNet sisters
- SpecVOBJ: when verb part of "speculative-verbs" set, and object is a trigger word
  - E.g. "IkappaBalpha phosphorylation and degradation (TRIG-EP) was analyzed (SPEC-EP)"
    - SpecVObj2+WN-seed:examine = 1
    - SpecVObj2+wn-sister:\_analyze\_v\_1(examine) = 1
    - SpecVObj2+wn-gen = 1





- Speculation:
  - Modal verb outscopes trigger
  - ARG0 of trigger-EP occurs as argument of the word 'analysis'
- General features:
  - E.g. (Modifier adjective) "...Fas upregulation (TRIG-EP) is central (ADJ-EP) to the preservation..."
  - 'ModAdj:\_central\_a\_1' = 1
  - Trigger name, trigger POS, etc.

# Negation/Speculation Classifiers

- Maximum Entropy classifier (Maxent Toolkit)
- Different feature combinations
- Baseline: bag of words
- Development phase:
  - Goldstandard events
  - 10-fold cross-validation
- Test phase:
  - Trained over goldstandard event extraction
  - Output of task-1 classifier as source of trigger words

NICTA



| Feats.      | Rec. | Prec. | FSc. |
|-------------|------|-------|------|
| BOW         | 22.1 | 47.7  | 30.2 |
| Spec. + BOW | 23.2 | 57.9  | 33.1 |

- Very low performance over automatic classification
- Linguistic features better than BOW
- Combination of features works best

## **Development results: Negation**

| Feats.     | Rec. | Prec. | FSc. |
|------------|------|-------|------|
| BOW        | 15.0 | 30.2  | 20.0 |
| Neg. + BOW | 24.3 | 68.4  | 35.9 |


• Bigger improvement over BOW

NICTA

## Official results for Task 3



| TEAM      | gold (match) | answer (match) | recall | prec. | fscore |
|-----------|--------------|----------------|--------|-------|--------|
| ConcordU  | 3617 (1182)  | 1943 ( 1182)   | 32.68  | 60.83 | 42.52  |
| VIBGhent  | 3617 (1105)  | 2227 ( 1104)   | 30.55  | 49.57 | 37.80  |
| ASU+HU+BU | 3617 ( 710)  | 1185 ( 710)    | 19.63  | 59.92 | 29.57  |
| NICTA     | 3617 ( 577)  | 1450 ( 575)    | 15.95  | 39.66 | 22.75  |
| USzeged   | 3617 ( 722)  | 3113 ( 722)    | 19.96  | 23.19 | 21.46  |
| CCP-BTMG  | 3617 ( 446)  | 777 ( 446)     | 12.33  | 57.40 | 20.30  |





- Keyword detection suffers from data sparseness
- Rules for event construction are too naive
- Deep parsing better than lexical baseline, but there are coverage problems
- Combined approach (detect triggers and themes together) to be explored for task 1



## Biomedical Event Annotation with CRFs and Precision Grammars

### Andrew MacKinlay, David Martinez, Timothy Baldwin



Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

