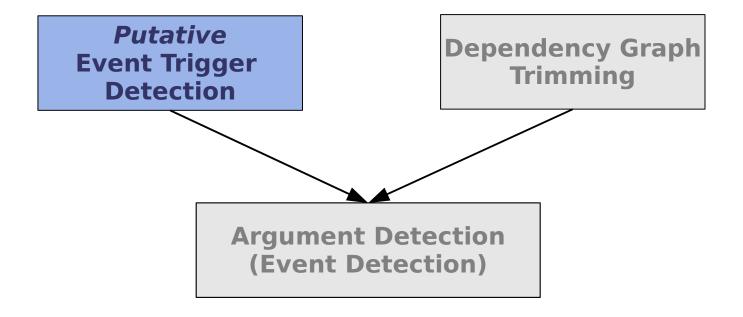
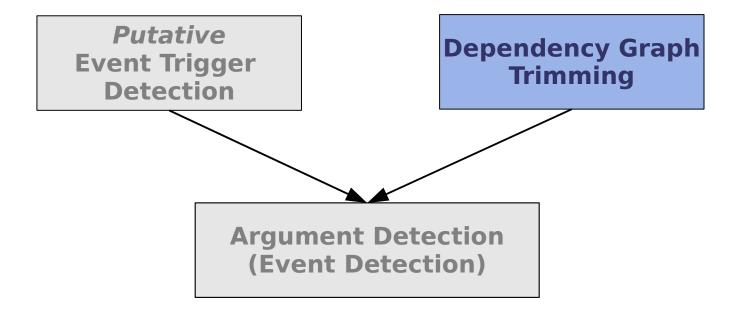
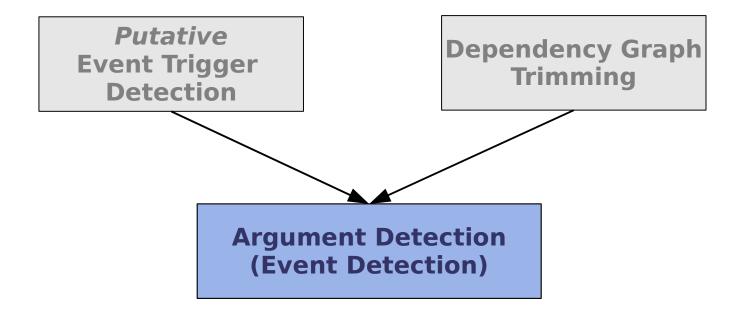

Event Extraction from Trimmed Dependency Graphs

Ekaterina Buyko, Erik Faessler, Joachim Wermter and Udo Hahn


Jena University Language and Information Engineering (JULIE) Lab Germany





Event Trigger Detection (1/3)

To be or not to be an Event Trigger

Event Trigger Detection (1/3)

To be or not to be an Event Trigger

- wide variety
 - 3,730 alternative morphological forms for Positive regulation

Event Trigger Detection (1/3)

To be or not to be an Event Trigger

- wide variety
 - 3,730 alternative morphological forms for Positive regulation

- high ambiguity
 - 'induction' (Positive regulation, Transcription, Gene expression, not a trigger)

Event Trigger Detection (2/3)

Curation of Dictionaries

important and discriminative

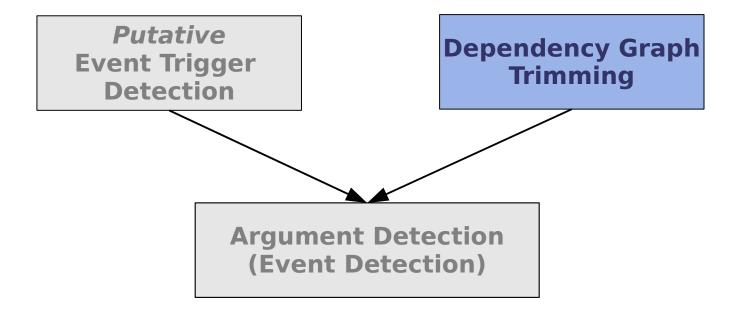
'upregulate': Positive regulation

- important and discriminative
 - 'upregulate': Positive regulation
- important though not fully discriminative
 - 'cleavage': Protein catabolism

- important and discriminative
 - 'upregulate': Positive regulation
- important though not fully discriminative
 - 'cleavage': Protein catabolism
- by and large non-discriminative
 - 'presence': Localization, Gene expression

- important and discriminative 'upregulate': Positive regulation
- important though not fully discriminative 'cleavage': Protein catabolism
- by and large non-discriminative
 'presence': Localization, Gene expression
- absolutely non-discriminative
 'observe', 'demonstrate', 'function'

- important and discriminative
 - 'upregulate': Positive regulation
- important though not fully discriminative
 - 'cleavage': Protein catabolism
- by and large non-discriminative
 - 'presence': Localization, Gene expression
- absolutely non-discriminative
 - 'observe', 'demonstrate', 'function'


Event Trigger Detection (3/3)

Disambiguation of Event Triggers

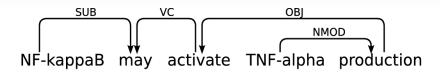
Importance of a trigger t_i for an event type e

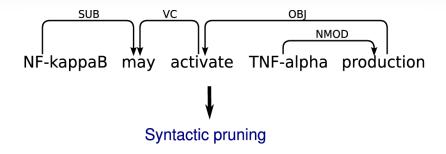
$$Imp_e(t_i) := \frac{freq_e(t_i)}{\sum_j freq_e(t_j)}$$

 $type(t_i) = argmax(Imp_e(t_i))$

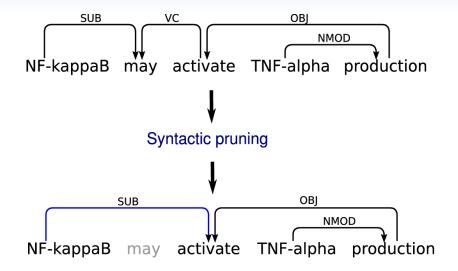
Dependency Graph Trimming (1/3) Introduction

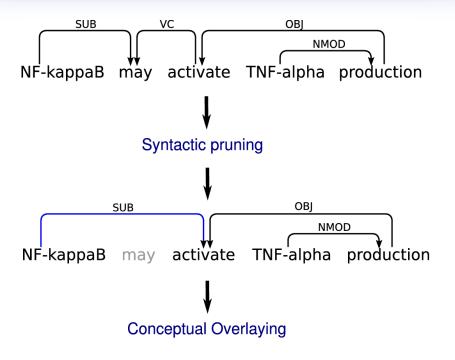
Dependency Graph Trimming (1/3) Introduction

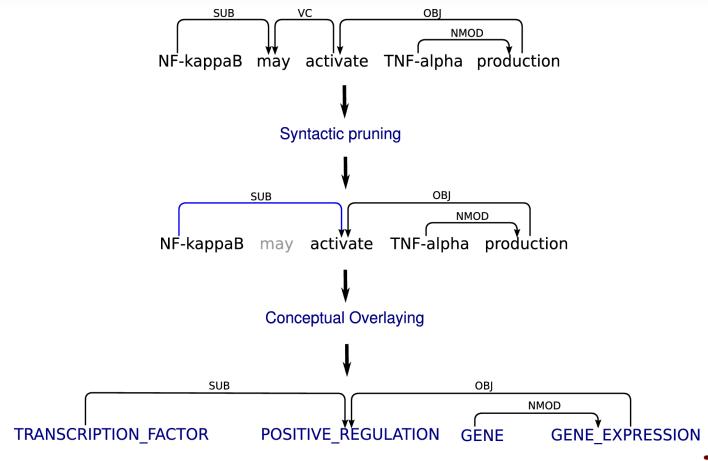

- syntactic pruning
 - elimination of irrelevant nodes and relations
 - propagation of relations

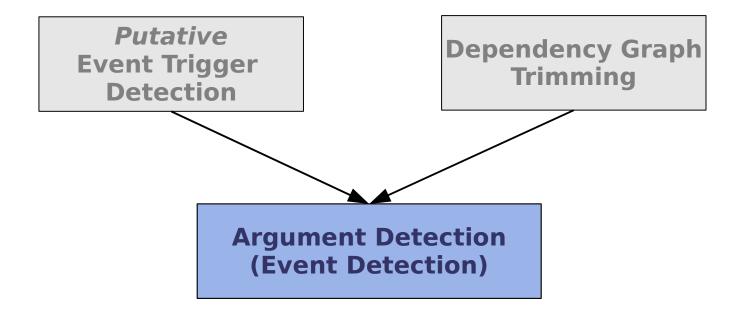

Dependency Graph Trimming (1/3) Introduction

- syntactic pruning
 - elimination of irrelevant nodes and relations
 - propagation of relations
- conceptual overlaying
 - normalization of nodes
 - semantic decoration of nodes









Dependency Graph Trimming (3/3) Conceptual Overlaying

- specific semantic hierarchy
 - transcription factor, binding site, promoter
 - MeSH terms (except chemical and drugs brunch)
 - gene/protein
- Gene Ontology annotations (GOA)
 - event-specific categories of GO terms
 - mapping of genes via UniProt to GOA
- experimental methods (taken from GENIA)

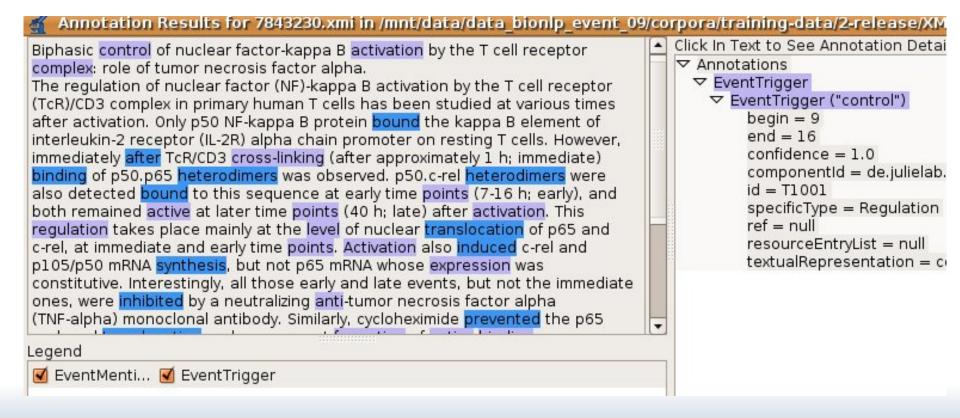
Argument Identification (1/3)

Annotation of Shared Task Data

 addition of putative event triggers: training data (17,542 triggers (6,607 original triggers))

Argument Identification (1/3)

Annotation of Shared Task Data


- addition of putative event triggers: training data (17,542 triggers (6,607 original triggers))
- → increase of negative event examples for learning

Argument Identification (1/3)

Annotation of Shared Task Data

- addition of putative event triggers: training data (17,542 triggers (6,607 original triggers))
- → increase of negative event examples for learning

Argument Identification (2/3) Approaches

- feature-based
 - lexical features
 - shallow parsing features
 - dependency parsing features
- graph kernel-based (Airola et al., BioNLP 2008)
 - only shortest path information
 - modified representation of dependency relations

Argument Identification (3/3)

Event-specific classification

- graph kernel classifier
 - Phosphorylation
 - Localization
 - Protein catabolism
- feature based classifier
 - Regulation
 - Positive regulation, Negative regulation
- ensemble of feature and graph kernel classifiers
 - Binding
 - Gene expression & Transcription

Evaluation (1/3) Baseline

shortest dependency path (SP) between putative argument and trigger

lf

- no directional change
- no intervening event triggers

then

argument is assigned the Theme role

Evaluation (2/3)

Results

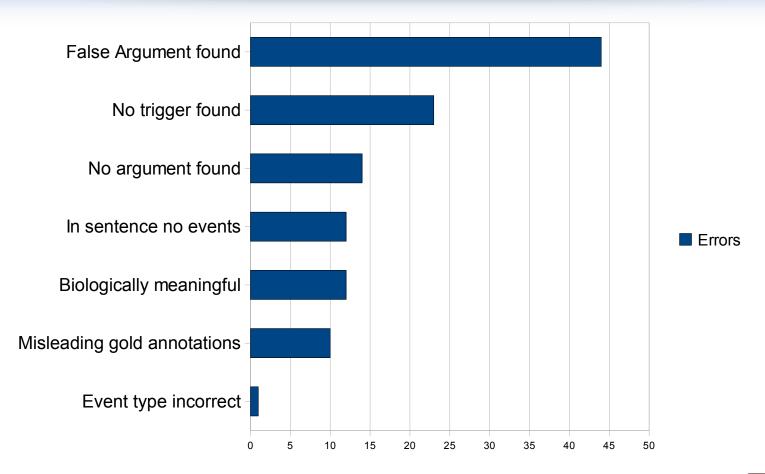

		Baseline			Official run		
Event Class	gold	recall	prec.	F-score	recall	prec.	F-score
Localization	174	42.53	44.85	43.66	43.68	77.55	55.88
Binding	347	32.28	37.09	34.51	49.57	35.25	41.20
Gene expression	722	61.36	80.55	69.65	64.82	80.27	71.72
Transcription	137	39.42	35.06	37.11	35.77	62.03	45.37
Protein catabolism	14	71.43	66.67	68.97	78.57	84.62	81.48
Phosphorylation	135	65.93	90.82	76.39	76.30	91.15	83.06
EVT-TOTAL	1529	51.14	60.90	55.60	57.49	63.97	60.56
Regulation	291	9.62	11.72	10.57	31.27	30.13	30.69
Positive regulation	983	10.38	11.33	10.83	34.08	37.18	35.56
Negative regulation	379	14.25	19.22	16.36	40.37	31.16	35.17
REG-TOTAL	1653	11.13	12.96	11.98	35.03	34.18	34.60
ALL-TOTAL	3182	30.36	35.7	32.82	45.82	47.52	46.66

Table 1: Approximate Span Matching/Approximate Recursive Matching.

Evaluation (3/3)

Error Discussion

Summary

- 2nd rank in Shared Task with an f-score of 46.7%
- manual curation of dictionaries
- disambiguation of triggers
- trimming of dependency graphs
- enrichment of training data with negative examples
- event-specific configurations

Acknowledgements

SPONSORED BY THE

